Аннотация		
Наименование дисциплины	Програ	ммирование в 1С
Научная специальность	01.03.02 «Приклад	(ная математика и информатика»
Профиль При наличии	A	нализ данных
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Формирование у студентов комплексных знаний и практических навыков в области разработки, внедрения и сопровождения цифровых решений на базе платформы 1С, что обеспечивает автоматизацию бизнес-процессов, повышение эффективности управления и поддержку принятия решений в различных отраслях

Задачи дисциплины

- 1. Изучить теоретические основы разработки цифровых решений на платформе 1С.
- 2. Овладеть навыками проектирования, настройки и внедрения конфигураций 1С.
- 3. Проанализировать примеры успешных кейсов внедрения решений на базе 1С в различных отраслях.
- 4. Развить навыки работы с инструментами платформы 1С для автоматизации учёта, управления и анализа данных.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основы архитектуры и функциональных возможностей платформы 1С:Предприятие.
- 2. Принципы проектирования и разработки конфигураций для автоматизации бизнеспроцессов.

Уметь:

- 1. Разрабатывать и настраивать конфигурации 1С для решения задач учёта, управления и анализа.
- 2. Проводить тестирование и отладку разработанных решений.

- 1. Навыками работы с основными инструментами платформы 1С (конфигуратор, запросы, отчеты).
- 2. Методами внедрения и сопровождения цифровых решений на базе 1С.

Аннотация		
Наименование дисциплины	Технологии а	анализа больших данных
Научная	01.03.02 «Приклад	цная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Получение студентом целостного представления о возможностях и ограничениях современных статистических методов и машинного обучения, а также об особенностях анализа данных для решения задач, возникающих в анализа данных

Залачи лиспиплины

- 1. Дать базовые знания о современных методах анализа данных и инструментах работы с ними;
- 2. Научить выполнять сбор, очистку и предварительную обработку данных;
- 3. Сформировать навыки статистического анализа и визуализации данных;
- 4. Познакомить с основами машинного обучения и построением прогнозных моделей;
- 5. Развить умение интерпретировать результаты анализа и представлять их в наглядной форме.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основные понятия и методы анализа данных;
- 2. Источники открытых данных и способы их обработки;
- 3. Основные статистические характеристики (среднее, медиана, дисперсия, корреляция);
- 4. Базовые алгоритмы машинного обучения (регрессия, классификация, кластеризация);
- 5. Принципы визуализации данных и типы графиков;
- 6. Современные технологии анализа данных (нейронные сети, NLP).

Уметь:

- 1. Обрабатывать и очищать данные с помощью Python (Pandas, numpy);
- 2. Проводить статистический анализ и проверку гипотез;
- 3. Строить модели машинного обучения (Scikit-learn);
- 4. Визуализировать данные (Matplotlib, Seaborn, Plotly);
- 5. Применять нейросетевые модели для решения задач (Keras, tensorflow).

- 1. Навыками средой разработки;
- 2. Методами предобработки и анализа данных;
- 3. Техниками визуализации для представления результатов;
- 4. Базовыми инструментами машинного обучения и глубокого обучения

Аннотация		
Наименование	Архитектура компьютера	
дисциплины		
Научная	01.03.02 «Приклад	ная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Развить у студентов способность программного управления компьютером средствами языка Ассемблера, познакомить студентов с устройством и функционированием аппаратных средств персональных компьютеров, современными тенденциями развития их архитектуры

Задачи дисциплины

- 1. освоить работу с системами счисления и представлением данных в компьютере;
- 2. узнать устройство и принципы функционирования аппаратного обеспечения компьютерных систем;
- 3. научиться программированию на языке Ассемблера, приобретя необходимые практические навыки;
- 4. узнать современные тенденции развития компьютерной архитектуры.

Требования к уровню освоения содержания дисциплины:

знать:

- 1. Операторы языка и структуру программы на Ассемблере;
- 2. Принципы функционирования компьютерных систем;
- 3. Кодирование данных в компьютере;
- 4. Что такое адаптер, контроллер, чипсет;
- 5. Аппаратную и программную модели процессора;
- 6. Структуру памяти компьютера;
- 7. Физическую и логическую структуру дисков.

уметь:

- 1. создавать программы на языке Ассемблера;
- 2. переводить числа и проводить вычисления в различных системах счисления;
- 3. переводить целые числа в прямой, обратный и дополнительный коды;
- 4. средствами языка Ассемблера управлять вводом информации с клавиатуры и выводом информации на текстовый и графический дисплей.

владеть:

1. методами программирования и отладкой программ на языке Ассемблера.

Аннотация		
Наименование дисциплины	BACKE	ND-РАЗРАБОТКА
Научная специальность	01.03.02 «Приклад	цная математика и информатика»
Профиль При наличии	A	нализ данных
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Изучение технологий Backend-разработки.

Задачи дисциплины

- 1. Рассмотреть технологии разработки сайта с использованием языка программирования
- 2.Изучить паттерн model-view-controller;
- 3. Освоить технологии взаимодействия сайта и базы данных.

Требования к уровню освоения содержания дисциплины:

знать:

- 8. Основные понятия и возможности языка программирования РНР;
- 9. Технологии создания сайта.

уметь:

- 1. Создавать web-страницы и формы для обработки данных;
- 2. Применять паттерн mvc для решения практических задач.

владеть:

- 2. Технологиями программирования с использованием MVC;
- 3. Навыками построения пользовательских форм сайтов.

Аннотация		
Наименование	FD∩NTE	IND DARDAEOTKA
ДИСЦИПЛИНЫ — — — — — — — — — — — — — — — — — — —	FRONTEND-РАЗРАБОТКА	
Научная	01.03.02 «Приклад	ная математика и информатика»
специальность	r	F-F
Профиль	Ai	нализ данных
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Развить у студентов способность создавать интерфейс интернет-сайтов в технологии HTML/CSS, познакомить студентов с программированием на языке JavaScript, основами проектирования, верстки и сборки проектов Web-приложений.

Задачи дисциплины

- рассмотреть проблемы и направления развития Web-технологий;
- освоить основные методы и средства проектирования программного интерфейса Web-сайтов в технологии HTML/CSS;
- научиться использовать дополнительные пакеты и библиотеки для Webпрограммирования;
- применять для создания сайтов современные объектно-ориентированные алгоритмические языки, знать их области применения и особенности.

Требования к уровню освоения содержания дисциплины:

знать:

- 1.Язык разметки гипертекстов HTML.
- 2. Каскадные таблицы стилей CSS;
- 3. Язык написания сценариев JavaScript;
- 4.Объектную модель документа;
- 5. Поисковую оптимизацию SEO;
- 6. Адаптивную верстку.

уметь:

- 1. Создавать крипты, внедрять их в Web-документ;
- 2. Работать с объектами, моделью DOM;
- 3. Обрабатывать события в JavaScript;
- 4. Создавать редактируемые таблицы, списки;
- 5.Отображать графики и диаграммы

владеть:

- 1. Методами внутренней и внешней оптимизации;
- 2.SEО-продвижением Web-сайтов;
- 3. Вёрсткой простых страниц. Написанием и редактированием стилей.

Аннотация		
Наименование дисциплины	ИН	ФОРМАТИКА
Научная	01.03.02 «Прикла,	цная математика и информатика»
пециальность Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

- 1.Изучение основ информатики, формирование базовых знаний в области алгоритмизации, архитектуры компьютера, защиты информации;
- 2. Развивать способности использовать знания в области прикладной математики и информатики;
- 3. Развивать способности в разработке бизнес-планов научно-прикладных проектов в области профессиональной деятельности.

Задачи дисциплины

- 1.Познакомить бакалавров с бурно развивающимися направлениями современной информатики нейронными сетями, архитектурой компьютера, защитой информации, фрактальной графикой и алгоритмизацией;
- 2.Указать важнейшие приложения математических пакетов (на примере маткад) в профессиональной деятельности и других сферах человеческой деятельности;
- 3.Построить с помощью икт компьютерные модели различных явлений природы и социальной среды;
- 4.Изложить основы использования информатики при обучении современным научным направлениям синергетике и теории хаоса;
- 5.Изложить перспективные направления разработки и использования средств икт в различных сферах деятельности.

Требования к уровню освоения содержания дисциплины:

знать:

- 1.Основные понятия и термины информатики;
- 2. Основные понятия в области алгоритмизации;
- 3. Основные понятия в области защиты информации;
- 4. Основные понятия структуры данных;
- 5. Архитектуру компьютера;
- 6. Что такое компьютерная модель;
- 7. Элементы фрактальной графики;
- 8. Нормативно-правовые документы в области информационных систем.

уметь:

- 1. Применять полученные знания при решении прикладных задач;
- 2.Строить компьютерные модели;
- 3. Решать стандартные за дачи с применением икт;
- 4. Решать вычислительные задачи с помощью компьютерных экспериментов;
- 5. Уметь оценивать сложность алгоритма.

владеть:

- 1.Основами программирования,
- 2. Разработкой компьютерных моделей,
- 3. Математическими пакетами и основами компьютерной графики.

Аннотация		
Наименование	Технологии п	рограммирования на Java
дисциплины		
Научная	01.03.02 «Прикла	дная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Формирование у студентов базы знаний и навыков в области программирования на языке высокого уровня Java.

Задачи дисциплины

- 1. Ознакомление студентов с современным представлением о семействе Javaтехнологий;
- 2. Изучение языка программирования Java в составе технологии javase;
- 3. Изучение основ использования JDK SE при проектировании Java приложений;
- 4. Использование интегрированной среды разработки программных проектов (IDE) для проектирования и отладки различных видов Java приложений;
- 5. Обеспечение качества в проектах в области ИТ в соответствии с установленными регламентами;
- 6. Распространение информации в проектах в области ИТ в соответствии с трудовым заданием.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. О функциональных возможностях языка.
- 2. Основные функции системы автоматической сборки и управления зависимостями Maven;
- 3. Основные принципы и шаблоны GRASP (Информационный эксперт, Создатель, Контроллер, Слабое зацепление, Высокая сплоченность), базовые шаблоны GOF (Прототип, фабрика, строитель, одиночка, наблюдатель, приспособленец, стратегия, команда и др.), знать шаблон Модель Представление-Контроллер (MVC);
- 4. Нотацию языка моделирования UML в части диаграмм классов, диаграмм последовательности
- 5. Основные средства и принципы организации стандартной библиотеки Java

Уметь:

- 1. Эффективно использовать инструментарий высокоуровневых языков программирования для анализа больших данных;
- 2. Разрабатывать и реализовывать автоматизированные тесты с целью верификации корректности реализованных программ с использованием библиотеки junit;
- 3. Разрабатывать и визуализировать модель классов системы на языке UML;
- 4. Осуществлять объектно-ориентированную декомпозицию программ на языке Java с разделением на модули (пакеты) с последующей реализацией;

5. Проводить объектную декомпозицию информационной системы, вырабатывать и обосновывать архитектурное решение.

- 1. Основными средства поддержки процедурного стиля программирования (типы данных, переменные, структура программы, функции, структурные типы) языка программирования Java;
- 2. Средствами языка Java поддерживающими основные принципы объектноориентированного подхода (поддержка абстракции, инкапсуляции, иерархии, модульности, типизации, параллелизма и сохраняемости в Java);
- 3. Основными средствами обобщенного программирования на Java (родовые компоненты);
- 4. Знаниями об основных современных средах разработки для Java;
- 5. Навыками разработки программ на языках высокого уровня.

Аннотация		
Наименование дисциплины	Компьютер	оное моделирование
Научная	01.03.02 «Прикладі	ная математика и информатика»
специальность		
Профиль	Ан	ализ данных
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля		Зачет

Построение компьютерных моделей в различных областях деятельности.

Задачи дисциплины

- 1. Познакомиться с понятием компьютерная модель;
- 2. Повторить и углубить знания по следующим темам: программирование, геометрия, алгоритмизация;
- 3. Выработать практические навыки использования математических методов и ИКТ для изучения и разработки компьютерных моделей;
- 4. Выработать практические навыки поиска научных знаний с помощью литературных источников и компьютерных сетей

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Понятие математической модели;
- 2. Понятие компьютерной модели;
- 3. Основы информатики и математики;
- 4. Системы итерированных функций;
- 5. Идеи программирования;
- 6. Элементы компьютерной графики;
- 7. Методы создания компьютерных моделей

Уметь:

- 1. Строить компьютерные модели;
- 2. Проводить компьютерные эксперименты;
- 3. Строить фрактальные модели с помощью итерированных функций и ИКТ

Владеть:

1. Методами построения компьютерных моделей.

Аннотация		
Наименование дисциплины	Комі	тыютерные сети
Научная специальность	01.03.02 «Приклад	(ная математика и информатика»
Профиль При наличии	A	нализ данных
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Познакомить студентов с сетевыми компьютерными технологиями и современными средствами создания Web-сайтов, научить грамотной работе с различными видами компьютерных сетей и управлению вычислительными сетями

Задачи дисциплины

- 1.Знакомство с видами и принципами работы компьютерных сетей, а также с системами компьютерной безопасности;
- 2.Изучение методов получения информации в сети Интернет и основ создания Web-сайтов, приобретение необходимых практических навыков;
- 3. Изучение структуры и методов программирования сайтов;
- 4.Изучение сетевого программного обеспечения и применения средств телекоммуникаций.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Структуру локальных и глобальных компьютерных сетей;
- 2. Аппаратное обеспечение сетей;
- 3. Принципы архитектуры OSI/ISO и TCP/IP;
- 4. Назначение протоколов и их виды;
- 5. Структуру Web-документа и теги на языке HTML;
- 6.Язык создания иртерактивных Web-страниц Java Script.

Уметь:

- 1. Работать с ресурсами локальной сети;
- 2. Проводить поиск информации в глобальной сети;
- 3. Создавать Web-документы с помощью языка HTML;
- 4. Управлять интерактивными элементами посредством сценариев на языке javascript;.

- 1. Навыками работы в локальных и глобальных сетях;
- 2. Компьютерными технологиями создания интерактивных Web-страниц.

Аннотация		
Наименование дисциплины	Моделирова	ние электронных схем
Научная	01.03.02 «Прикладі	ная математика и информатика»
специальность		
Профиль	Ан	ализ данных
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Познакомить студентов с устройством и назначением элементов электронных цепей и схем и происходящими в них процессами.

Задачи дисциплины

- 1. Знакомство с электрофизическими процессами, происходящими в электронных цепях;
- 2. Знакомство с основными радиотехническими элементами, применяющимися в современных электронно-вычислительных устройствах;
- 3. Приобретение студентами знаний о правилах построения схем электрических цепей:
- 4. Знакомство с принципами работы элементной базы, применяемой для построения схем цифровой логики.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основные законы электрических явлений;
- 2. Базовые элементы электрических цепей, их свойства и способы применения;
- 3. Базовые элементы интегральных схем, их схемотехнические реализации и принципы работы;
- 4. Представление информации при обработке её электронными схемами.

Уметь:

- 1. Применять методы моделирования электронных схем при использовании специализированных программных пакетов;
- 2. Решать задачи по выбору параметров электротехнических элементов для построения электрических цепей.

Владеть:

1. Техникой моделирования электронных схем.

Аннотация		
Наименование	Моделирование	искусственного интеллекта
дисциплины		
Научная	01.03.02 «Прикла	дная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Получить основные понятия в области проектирования, создания и эксплуатации систем искусственного интеллекта.

Задачи дисциплины

«Моделирование искусственного интеллекта» является выработка у студента умений и навыков, с помощью которых можно было бы решать широкий круг специфических задач методами машинного обучения и моделирования искусственного интеллекта, закладка прочного фундамента системно - информационной картины мира. Тем самым, решается одна из мировоззренческих задач — формирование целостного представления о мире

Требования к уровню освоения содержания дисциплины:

Знать:

1. Основные методы машинного обучения

Уметь:

1. Решать практические задачи на основе машинного обучения.;

Владеть:

1. Принципами и понятийным аппаратом, описывающими современные методики моделирования искусственного интеллекта.

Аннотация		
Наименование дисциплины	Математич	еское моделирование
Научная	01.03.02 «Прикладі	ная математика и информатика»
специальность		
Профиль	Ан	ализ данных
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Построение математических моделей в различных областях деятельности

Задачи дисциплины

- 1. Познакомиться с понятием математическая модель;
- 2. Познакомиться с фрактальными моделями;
- 3. Повторить и углубить знания по следующим темам: программирование, геометрия, алгоритмизация;
- 4. Выработать практические навыки использования математических методов и ИКТ для изучения и разработки математических моделей;
- 5. Выработать практические навыки поиска научных знаний с помощью литературных источников и компьютерных сетей

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Понятие математической модели;
- 2. Понятие фрактальной модели;
- 3. Основы информатики и математики;
- 4. Системы итерированных функций;
- 5. Идеи программирования;
- 6. Элементы компьютерной графики;
- 7. Методы построения математических моделей

Уметь:

- 1. Строить математические модели;
- 2. Проводить компьютерные эксперименты;
- 3. Строить фрактальные модели с помощью итерированных функций.

Владеть:

1. Методами построения математических моделей.

Аннотация		
Наименование	Методы моделиров	ания фрактальных множеств
дисциплины Научная	01.03.02 «Приклад	(ная математика и информатика»
специальность	•	• •
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Изучение методов моделирования фрактальных множеств и приложения их при решении математических задач, связанных с геометрией, теорией дифференциальных уравнений, фрактальной геометрией, системой алгебраических уравнений, извлечением корней из действительных чисел, разработкой математических моделей

Задачи дисциплины

- 1. Дать определение методу итераций;
- 2. Дать определение понятию фрактал;
- 3. Познакомить бакалавров с орбитой точки, диаграммами Ламерея, циклическими точками;
- 4. Познакомить бакалавров с оператором сжатия на комплексной плоскости;
- 5. Познакомить бакалавров с оператором сжатия в метрическом пространстве;
- 6. Научить решать некоторые уравнения методом итераций;
- 7. Познакомить с алгоритмами построения фрактальных множеств.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основные идеи метода итераций;
- 2. Основные методы моделирования фрактальных множеств
- 3. Основные средства программирования в языке python, c++;
- 4. Примеры задач решаемых методом итераций;
- 5. Понятие фрактального аттрактора нелинейного отображения.

Уметь:

- 1. Решать задачи методом итераций в алгебре, анализе, геометрии;
- 2. Построить простейшую фрактальную модель методом итераций;
- 3. Моделировать фрактальные множества.

Владеть:

1. Методом итераций при моделировании фрактальных множеств и разработкой математических моделей.

Аннотация		
Наименование дисциплины	МЕТОДІ	ы оптимизации
Научная	01.03.02 «Прикла,	дная математика и информатика»
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Изучение теории экстремальных задач и методов поиска оптимальных решений.

Задачи дисциплины

- 1. Ознакомить с основными концепциями оптимизации и их применением для решения информационных задач в прикладных областях;
- 2. Овладеть принципами и понятийным аппаратом, описывающими современные методы прикладной математики;
- 3. Усвоить теоретические основы современных технологий и методов решения задач принятия решений.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основные концепции экстремальных задач;
- 2. Основные методы оптимизации;
- 3. Примеры задач оптимизации в прикладной области;

Уметь:

- 1. Находить оптимальные решения экстремальных задач;
- 2. Составить и решить задачу оптимизации;
- 3. Использовать информационные технологии для моделирования вычислительных процессов методов оптимизации.

Владеть:

1. Методами поиска оптимальных решений прикладных экстремальных задач.

Аннотация		
Наименование	Математические ос	новы Компьютерной графики
дисциплины		
Научная	01.03.02 «Приклад	цная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	4	144
Формы контроля	Зачет	

Состоит в том, чтобы познакомить студентов с математическими основами компьютерной графики.

Задачи дисциплины

- 1. Выработка практических навыков построения изображений, графиков, диаграмм, фигур, поверхностей и тел;
- 2. Изучение базовых математических принципов компьютерной графики;
- 3. Приобретение студентами знаний о двух и трехмерных преобразованиях систем координат и объектов, построении проекций.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основные понятия, использующиеся в компьютерной графике, такие как способы визуализации, характеристики растровых и векторных изображений;
- 2. Цветовые модели и кодировки цвета;
- 3. Способы улучшения изображений;
- 4. Базовые растровые алгоритмы;
- 5. Иметь представление о координатном методе.

Уметь:

- 1. Строить базовые примитивы, такие как прямые, многоугольники, эллипсы различными методами;
- 2. Применять двухмерные и трехмерные аффинные преобразования координат и объектов;
- 3. Строить различные типы трехмерных проекций объектов;
- 4. Ориентироваться в терминологии и при необходимости самостоятельно изучать дополнительные разделы.

Владеть:

1. Техникой построения графических объектов различной сложности.

Аннотация		
Наименование дисциплины	МНОГОПРОЦЕС	СОРНЫЕ ВЫЧИСЛЕНИЯ
Научная специальность	01.03.02 «Прикладі	ная математика и информатика»
Профиль При наличии	Ан	ализ данных
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Развить у студентов способность организации высокопроизводительных вычислений в рамках технологии параллельного программирования MPI.

Задачи дисциплины

- 1. Познакомить студентов с организацией многопроцессорных вычислительных систем;
- 2. Познакомить с методами распараллеливания алгоритмов;
- 3. Привить навыки параллельного программирования с использованием коммуникационной библиотеки MPI.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Современные компьютерные технологии параллельных вычислений;
- 2. Архитектуры современных кластерных вычислительных систем,
- 3. Идеи параллельного программирования и принцип работы многопроцессорного кластера;

Уметь:

- 1. Работать на многопроцессорном кластере;
- 2. Писать программы, используя параллельное программирование;

Владеть:

1. Методами распараллеливания алгоритмов в технологии МРІ.

Аннотация		
Наименование дисциплины	МЕТОДЫ ВЫЧИС	ЛИТЕЛЬНОЙ МАТЕМАТИКИ
Научная специальность	01.03.02 «Прикла	дная математика и информатика»
Профиль При наличии	Анализ данных	
Трудоемкость	Зачетные единицы	Часы
дисциплины	8	288
Формы контроля	Экзамен	

Развить у студентов способность работать с современными методами обработки приближенных чисел, численными методами решения обыкновенных и дифференциальных уравнений и их систем, численным дифференцированием и интегрированием.

Задачи дисциплины

- 4. Научить грамотной постановке и анализу решений математических задач на компьютере;
- 5. Освоить работу с приближенными числами и оценивать точность проводимых вычислений;
- 6. Выработать практические навыки интерполяции и аппроксимации табличных функций;
- 7. Познакомить с применением вычислительных методов при решении математических задач, задаваемых уравнениями и их системами.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Этапы решения математической задачи на компьютере;
- 2. Источники погрешности при вычислениях;
- 3. Способы интерполяции и аппроксимации табличных функций;
- 4. Что такое конечные разности и квадратура;
- 5. Численное интегрирование дифференциальных уравнений и их систем;
- 6. Решение дифференциальных уравнений с помощью разностных сеток.

Уметь:

- 1. Записывать приближенные числа;
- 2. Проводить оценку погрешности приближенных вычислений;
- 3. Находить корни уравнений и систем с заданной точностью;
- 4. Интерполировать и аппроксимировать табличные функции полиномами;
- 5. Численно дифференцировать и интегрировать;
- 6. Вычислять численное решение обыкновенных дифференциальных уравнений и их

- 1. Способами представления приближенных чисел;
- 2. Методами интерполяции и аппроксимации дискретных функций;
- 3. Методами построения вычислительных схем решения математических задач.

Аннотация		
Наименование	Нели	нейная динамика
дисциплины		
Научная	01.03.02 «Приклад	цная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Познакомить бакалавров с основными направлениями приложений нелинейной динамики.

Задачи дисциплины

- 1. Дать основы нелинейной динамики;
- 2. Установить связь между нелинейными дискретными и непрерывными динамическими системами;
- 3. Выработать практические навыки использования нелинейной динамики при создании математических моделей с помощью информационных и коммуникационных технологий (ИКТ)

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Применения нелинейной динамики в различных областях и дисциплинах;
- 2. Типы задач, которые решаются нелинейной динамикой;
- 3. Что такое аттрактор, бассейн притяжения, циклическая точка;
- 4. Что такое дискретная и непрерывная математическая модель;
- 5. Элементы компьютерной графики.

Уметь:

- 1. Решать вычислительные задачи с помощью компьютерных экспериментов;
- 2. Итерировать функции вещественной и комплексной переменных;
- 3. Строить графики итераций функций и диаграммы Ламерея с помощью ИКТ;
- 4. Решать уравнения с помощью метода итераций;
- 5. Создавать математические модели различных объектов и явлений

Владеть:

1. Математическими методами и навыками программирования в различных средах

Аннотация		
Наименование дисциплины	Нейросет	евое моделирование
Научная специальность	01.03.02 «Приклад	ная математика и информатика»
Профиль При наличии	Анализ данных	
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Ознакомление с перспективным быстроразвивающимися направлением информатики - нейроинформатикой

Задачи дисциплины

- 1. Познакомить студентов с базовыми понятиями нейроинформатики: нейрон, персептрон, нейронные сети, нейрокомпьютеры;
- 2. Выработать практические навыки работы с простыми нейронными системами и освоить принципы их функционирования.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Базовые понятия нейроинформатики: нейрон, персептрон, нейронная сеть нейрокомпьютер;
- 2. Структуру и функции различных моделей нейронов;
- 3. Историю и перспективы развития нейрокомпьютеров.

Уметь:

- 1. Строить модели различных типов нейронов;
- 2. Строить нейронные сети с прямой и обратной связью;
- 3. Проводить процесс обучения сети, тестировать её, использовать сеть для решения поставленной задачи (строить модель сети).

Владеть:

1. Техникой построения нейронных сетей для решения различных задач.

Аннотация		
Наименование	Осн	овы синергетики
дисциплины		
Научная	01.03.02 «Прикла	дная математика и информатика»
специальность		
Профиль	A	нализ данных
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Изучение основ синергетики — фрактальной геометрии, нелинейных дискретных и непрерывных динамических систем, теории хаоса и информационных и коммуникационных технологий (ИКТ) для развития способности использовать знания в области прикладной математики и информатики и развития способности в разработке бизнес-планов научно-прикладных проектов

Задачи дисциплины

- 1. Познакомить бакалавров с бурно развивающимися направлениями современной математики теорией катастроф, теорией бифуркаций, голоморфной динамикой и теорией хаоса;
- 2. Указать важнейшие приложения данных дисциплин в образовании и других сферах человеческой деятельности;
- 3. Построить с помощью методов синергетики математические модели различных явлений природы и социальной среды;
- 4. Изложить основы использования ИКТ при обучении синергетике и теории хаоса;
- 5. Научить приближенно решать нелинейные системы дифференциальных уравнений с помощью ИКТ;
- 6. Изложить перспективные направления разработки и использования средств ИКТ в образовании;
- 7. Указать способы создания художественных композиций с помощью ИКТ и фракталов.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Различные подходы к определению понятию размерность множества;
- 2. Итерирование функций вещественной переменной;
- 3. Итерирование функций комплексной переменной;
- 4. Определение понятия хаоса;
- 5. Элементы теории бифуркаций;
- 6. Элементы компьютерной графики.

Уметь:

- 1. С помощью фракталов строить математические модели;
- 2. Решать вычислительные задачи с помощью компьютерных экспериментов;
- 3. Исследовать хаотические отображения.

Владеть:

2. Математическими методами и основами программирования.

Аннотация		
Наименование	Системные	ілатформы и оболочки
дисциплины		
Научная	01.03.02 «Приклад	ная математика и информатика»
специальность		
Профиль	Анализ данных	
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	3	108
Формы контроля	Зачет	

Формирование у студента понятия системных платформ и оболочек, их назначения и функциональности, понимания общих принципов их построения.

Задачи дисциплины

- 1. Ознакомление студентов с историей развития, классификацией и общими характеристиками ОС;
- 2. Изучение базовых принципов организации ОС;
- 3. Приобретение студентами необходимых навыков работы с различными операционными системами;
- 4. Расширение кругозора известных им операционных систем.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Классификацию и назначение различных ОС с точки зрения их развития и функциональности;
- 2. Базовые принципы организации ОС;
- 3. Основные теоретические понятия, такие как ресурсы, процессы, нити, распределение ресурсов, виртуализация ресурсов, организация файловых систем, надежность и безопасность ОС.

Уметь:

- 1. Устанавливать и настраивать различные операционные системы;
- 2. Свободно работать с интерфейсом командной строки, создавать пакетные файлы и скрипты;
- 3. Работать с различными файловыми системами;
- 4. Устанавливать и конфигурировать компьютерные сети в различных ОС;
- 5. Ориентироваться в технической документации по ОС и при необходимости самостоятельно изучать дополнительные разделы.

Владеть:

1. Техникой установки и настройки различных операционных систем.

Аннотация		
Наименование дисциплины	СПОРТИВНО	Е ПРОГРАММИРОВАНИЕ
Научная специальность	01.03.02 «Прикла	дная математика и информатика»
Профиль При наличии	Α	нализ данных
Трудоемкость	Зачетные единицы	Часы
дисциплины	2	72
Формы контроля	Зачет	

Показать методы усиления алгоритмической самоподготовки студентов..

Задачи дисциплины

- 1. Дать представление о спортивном программировании и основных сайтах, проводящих соревнования по спортивному программированию;
- 2. Научить решать простейшие алгоритмические задачи с последующим тестированием их в контестере спортивного программирования;
- 3. Познакомить с правилами соревнований, проводимых в рамках спортивного программирования.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основные сайты, поддерживающие спортивное программирование;
- 2. Правила проведения соревнований по спортивному программированию;
- 3. Этапы решения задач и тестирования в контест-системах.

Уметь:

- 1. Решать простейшие задачи спортивного программирования;
- 2. Тестировать решения в контест-системах.

Владеть:

1. Методом тестирования задач с помощью контест-систем.

0,Аннотация		
Наименование	Язык SQL и ре	ляционные модели данных
дисциплины		
Научная	01.03.02 «Прикла	дная математика и информатика»
специальность		
Профиль	A	нализ данных
При наличии		
Трудоемкость	Зачетные единицы	Часы
дисциплины	5	180
Формы контроля	Экзамен	

Подготовка квалифицированного специалиста в области проектирования, создания и эксплуатации баз данных, экспертных систем, имеющего глубокие познания в области моделирования данных, представления знаний.

Задачи дисциплины

- 1. Выработать у студента умения и навыки, с помощью которых можно было бы решать широкий круг задач, связанных с проектированием, созданием и сопровождением баз данных;
- 2. Познакомить с основами функционирования и организации экспертных систем;
- 3. Заложить фундамент системно информационной картины мира.

Требования к уровню освоения содержания дисциплины:

Знать:

- 1. Основы языка SQL;
- 2. Современные способы построения, разработки и эксплуатации баз данных;
- 3. Иметь глубокие познания в области моделирования данных;
- 4. Понятие информационной системы и экспертной системы.

Уметь:

- 1. Разрабатывать БД различной сложности и интегрированности с использованием различных систем управления базами данных;
- 2. Администрировать и сопровождать базы данных и информационные системы.

- 1. Методами моделирования данных, создания и эксплуатации баз данных;
- 2. Компьютерными технологиями, включая программирование компьютерную математику.