МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Числовое моделирование для решения прикладных задач Направление 29.03.02 Технологии и проектирование текстильных изделий

Профиль Технологии цифрового проектирования композиционных материалов

Квалификация выпускника: Бакалавр

Кострома 2025

Рабочая программа дисциплины «Числовое моделирование для решения прикладных задач» разработана в соответствии с Федеральным государственным образовательным стандартом по направлению подготовки 29.03.02 Технологии и проектирование текстильных изделий" № 963 от 22.09.2017

Разработал:

Богатырева Марина Сергеевна, доцент кафедры ТММ, ДМ и ПТМ

Рецензент: Гречухин Александр Павлович, профессор кафедры Технологии и проектирования тканей и трикотажа ФГБОУ ВО «Костромской государственный университет», д.т.н.

ПРОГРАММА УТВЕРЖДЕНА:

Заведующий кафедрой Технологии и проектирования тканей и трикотажа:

Корабельников А.Р., д.т.н., профессор

Протокол заседания кафедры № 8 от 30.06.2025 г.

1. Цели и задачи освоения дисциплины

Цель дисциплины:

Сформировать у студентов компетенции в области численного моделирования физических процессов и явлений, возникающих при разработке, проектировании, производстве и эксплуатации композиционных материалов на волокнистой основе. Научить студентов применять современные программные инструменты и методы для решения инженерных задач, связанных с анализом свойств и поведения композиционных материалов.

Задачи дисциплины:

- 1. Освоение основных методов численного моделирования:
- Изучение метода конечных разностей (МКР) и метода конечных элементов (МКЭ).
- Овладение методами дискретизации и аппроксимации дифференциальных уравнений.
- Изучение методов решения систем линейных и нелинейных алгебраических уравнений.
- 2. Изучение принципов построения и анализа вычислительных моделей:
- Освоение этапов построения вычислительной модели: определение геометрии, задание граничных условий, выбор материала, выбор типа анализа.
 - Изучение методов верификации и валидации вычислительных моделей.
 - Оценка точности и устойчивости численных решений.
- 3. Применение численного моделирования для решения прикладных задач в области композиционных материалов:
 - Моделирование процессов теплопереноса и влагопереноса в композиционных материалах.
- Моделирование напряженно-деформированного состояния композиционных конструкций под нагрузкой.
 - Моделирование процессов формования и отверждения композиционных материалов.
 - Моделирование динамического поведения композиционных материалов.
- Оптимизация состава и структуры композиционных материалов с использованием численного моделирования.
- 4. Освоение современных программных пакетов для численного моделирования:
- Изучение интерфейса и функциональности распространенных САЕ-систем (например, ANSYS, Abaqus, COMSOL).
 - Развитие навыков работы с препроцессорами, решателями и постпроцессорами.
- Освоение методов создания сеток конечных элементов.
- 5. Развитие навыков самостоятельной работы и анализа результатов численного моделирования:
- Формирование умения интерпретировать результаты численного моделирования и делать выводы о поведении композиционных материалов.
- Развитие навыков представления результатов моделирования в виде отчетов и презентаций.
- Обучение критической оценке результатов моделирования и сопоставлению их с экспериментальными данными.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен: освоить компетенции:

ПК-1.Способен проектировать текстильные материалы с учетом сырья и назначения

И.ПК-1.1. Знать современные программные продукты и методики компьютерного проектирования, моделирования, визуализации и презентации текстильных материалов и изделий.

И.ПК-1.2. Уметь использовать современные программные продукты и методики для компьютерного проектирования, моделирования, визуализации и презентации текстильных материалов с заданными потребительскими свойствами.

И.ПК-1.3. Уметь использовать CAD- и PDM-системы для проектирования текстильных материалов сложных структур. Использовать CAE-системы автоматизированного расчета и компьютерного моделирования для проектирования структуры текстильных материалов сложных структур.

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к элективным дисциплинам Б1.В.ДВ.02 в части учебного плана, формируемой участниками образовательных отношений Изучается в 5 семестре.

4. Объем дисциплины 4.1. Объем дисциплины в зачетных единицах с указанием академических часов и виды учебной работы

Виды учебной работы	Очная форма
	Всего
Общая трудоемкость в зачетных единицах	3
Общая трудоемкость в часах	108
Аудиторные занятия в часах, в том числе:	50
Лекции	16
Практические занятия	32
Лабораторные занятия	-
Самостоятельная работа, в часах	60
Контроль	-
Форма промежуточной аттестации	зачет
ИКР	-

4.2 Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма	
	Всего	
Лекции	16	
Практические занятия	32	
Лабораторные занятия	-	
Консультации	-	
Зачет/зачеты	-	
Экзамен/экзамены	-	
Курсовые работы	-	
Курсовые проекты	-	
Всего	48	

5. Содержание дисциплины, структурированное по темам (разделам), с указанием количества часов и видов занятий 5.1 Тематический план учебной дисциплины

№	Название раздела, темы	Всего	Аудиторные		Самостоятельная
		час	Лекц.	лаборат	работа
				орные	

		1	1		
1	Введение в численное моделирование	2	2		
	Освоение интерфейса САЕ-системы	14		4	12
	1 1		_	•	
2	Метод конечных разностей	2	2		
	Моделирование теплопроводности в	16		4	12
	композиционных материалах	10		7	12
3		-			
3	Метод конечных элементов	4	4		
	Статический анализ композитной балки	16		8	8
1	Hyanayyyaa Manayyaanayyya manayyy			0	- U
4	Численное моделирование тепловых	4	4		
	процессов				
	Моделирование процесса отверждения	16		8	8
	композита	10		· ·	0
5		1			
)	Численное моделирование механического	4	4		
	поведения композиционных материалов				
	Динамический анализ композитной панели	16		8	8
6	Оптимирация с использованием	+			<u>-</u>
U	Оптимизация с использованием		2		8
	численного моделирования				
	Всего	108	16	32	60
L	1	-00	1	~-	5.5

5.2. Содержание

- 1. Введение в численное моделирование (2 часа):
- Место численного моделирования в инженерной практике.
- Этапы численного моделирования: препроцессинг, решение, постпроцессинг.
- Основные методы численного моделирования: МКР, МКЭ, метод конечных объемов.
- Типы задач, решаемых с помощью численного моделирования в области композиционных материалов.
- 2. Метод конечных разностей (2 часа):
 - Дискретизация области и аппроксимация производных.
 - Явные и неявные схемы.
- Устойчивость и сходимость разностных схем.
- Применение МКР для решения задач теплопроводности и диффузии в одномерных задачах.
- 3. Метод конечных элементов (4 часа):
 - Вариационная формулировка задач.
- Построение конечных элементов: выбор аппроксимирующих функций, формирование матрицы жесткости.
 - Решение систем линейных алгебраических уравнений.
 - Типы конечных элементов (стержни, балки, пластины, объемные элементы).
 - Применение МКЭ для решения задач статического анализа композиционных конструкций.
- 4. Численное моделирование тепловых процессов (2 часа):
 - Уравнения теплопроводности и конвекции.
- Численные методы решения уравнений теплопроводности: стационарные и нестационарные задачи.
 - Моделирование теплового контакта между элементами конструкции.
 - Применение для анализа нагрева и охлаждения комп озиционных материалов.
- 5. Численное моделирование механического поведения композиционных материалов (4 часа):
 - Модели упругости, пластичности и вязкоупругости.
 - Моделирование повреждений и разрушения композиционных материалов.
 - Численное решение задач статического и динамического анализа.
- Применение для анализа прочности и жесткости композитных конструкций.
- 6. Оптимизация с использованием численного моделирования (2 часа):

- Методы оптимизации (градиентные методы, генетические алгоритмы).
- Применение численного моделирования для оптимизации формы, состава и структуры композиционных материалов.
- Примеры оптимизации композиционных конструкций.

6. Методические материалы для обучающихся по освоению дисциплины 6.1. Самостоятельная работа обучающихся по дисциплине

Nº	Название раздела, темы	Задание	Всего час	Методичес Форма кие контроля рекомендац ии
1	Введение в численное моделирование	Теоретический материал, примеры применения, разбор практических задач.		
	Освоение интерфейса CAE- системы	Решение задач, работа с программным обеспечением, моделирование, анализ данных, проектная работа. Основной упор делается на		Изучение Контроль материалов выполнени лекций из задания рекомендуе мой литературы
	Метод конечных разностей	практическое применение полученных знаний и навыков для решения конкретных задач, возникающих при проектировании текстильных материалов. Акцент на использование современных САD/САЕ систем для визуализации и анализа результатов.	6	Изучение Контроль материалов выполнени лекций ия задания рекомендуе мой литературы
2	Моделирование теплопроводности в композиционных материалах	Теоретический материал, примеры применения, разбор практических задач.		
	Метод конечных элементов	Решение задач, работа с программным обеспечением, моделирование, анализ данных, проектная работа. Основной упор делается на		Изучение Контроль материалов выполнени лекций из задания рекомендуе мой литературы
	Статический анализ композитной балки	практическое применение полученных знаний и навыков для решения конкретных задач, возникающих при проектировании и исследовании текстильных материалов. Акцент на использование современных САD/САЕ систем для визуализации и анализа результатов.	6	Изучение Контроль материалов выполнени лекций из задания рекомендуе мой литературы
3	Численное моделирование тепловых процессов	Теоретический материал, примеры применения, разбор практических задач.		
	Моделирование процесса отверждения композита	Решение задач, работа с программным обеспечением, моделирование, анализ данных, проектная работа.		Изучение Контроль материалов выполнени лекций ия задания рекомендуе мой

	Oavanyaë viitan itaraaman va	1	
	Основной упор делается на		литературы
	практическое применение		
	полученных знаний и		
	навыков для решения		
	конкретных задач,		
	возникающих при		
	проектировании и		
	исследовании текстильных		
	материалов. Акцент на		
	использование		
	современных CAD/CAE		
	систем для визуализации и		
	анализа результатов.		
Численное моделирование	Теоретический материал,	12	Изучение Контроль
механического поведения	примеры применения,		материалов выполнени
композиционных материалов	разбор практических задач		лекций ия задания
_			рекомендуе
			мой
			литературы
Подготовка к зачету		6	
Всего		60	

6.2. Методические рекомендации студентам, изучающим дисциплину

Студенту настоятельно рекомендуется посещать лекции ввиду большого объема теоретического и практического материала дисциплины На лекции нужно обязательно составлять конспект. Это необходимо по той причине, что в виду специфики языка программирования самостоятельная работа с учебной литературой без предварительной подготовки может оказаться весьма затруднительной. За пропущенные лекции и практические занятия студент должен отчитаться перед преподавателем, представив реферат на пропущенную тему и выполнив домашнее задание по теме.

Большое внимание студентам следует уделять самостоятельной работе, которая складывается из изучения материалов лекций и рекомендуемой литературы, подготовке к практическим занятиям

Систематическое изучение материалов лекций и подготовка к практическим занятиям - залог накопления глубоких знаний и успешной сдачи зачета по дисциплине. Студентам следует помнить, что допуском к зачету является освоение учебной программы семестра, что должно быть подтверждено выполненными заданиями. Готовиться к практическим занятиям следует не только теоретически. За период обучения необходимо овладеть навыками практического использования теоретических знаний.

По итогам освоения дисциплины проводится зачет, целью которого является проверка освоенности дисциплины и компетенций.

Зачет преподавателем проводится для студентов, успешно освоивших дисциплину. При возникновении трудностей в изучении того или иного раздела математики студентам рекомендуется посещать консультации преподавателей.

6.2. Тематика и задания для практических занятий

- 1. Освоение интерфейса САЕ-системы (4 часа):
- Знакомство с интерфейсом (например, ANSYS, Abaqus, COMSOL).
- Создание геометрии, задание свойств материала, создание сетки.
- Назначение граничных условий и нагрузок.
- Запуск решения.
- 2. Моделирование теплопроводности в композиционных материалах (4 часа):
- Решение задач стационарной и нестационарной теплопроводности.

- Анализ влияния теплофизических свойств на распределение температуры.
- Моделирование теплового контакта между слоями композита.
- 3. Статический анализ композитной балки (4 часа):
- Создание модели балки из композитного материала.
- Задание различных типов нагрузок (растяжение, изгиб, кручение).
- Анализ распределения напряжений и деформаций.
- Оценка прочности балки.
- 4. Моделирование процесса отверждения композита (4 часа):
- Моделирование тепловыделения при отверждении.
- Расчет температурных полей и остаточных напряжений.
- Анализ влияния технологических параметров на процесс отверждения.
- 5. Динамический анализ композитной панели (4 часа):
- Создание модели панели из композитного материала.
- Приложение ударной нагрузки.
- Анализ динамического поведения панели.
- Оценка прочности панели при ударном воздействии.
- 6. Проектная работа: Численное моделирование и оптимизация композитной конструкции (8 часов):
- Самостоятельный выбор задачи, связанной с численных моделированием композитной конструкции.
 - Разработка и верификация модели.
 - Проведение численного анализа.
 - Представление результатов в виде отчета и презентации.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

а) основная

- 1. Бахвалов Н.С. "Численные методы". Фундаментальный учебник по численным методам.
- 2. Вержбицкий В.М. "Численные методы линейной алгебры".
- 3. Зенкевич О. "Метод конечных элементов в технике"

б)дополнительная

- 1. Ванин Г.А. "Микромеханика композитов".
- 2. Кобелев В.Н., Богданов В.В. "Численное моделирование технологических процессов изготовления изделий из полимерных композиционных материалов".
- 3. Christensen R.M. "Mechanics of Composite Materials".
- 4. Jones R.M. "Mechanics of Composite Materials".

в)Онлайн-ресурсы

Онлайн-курсы по математическому анализу, дифференциальным уравнениям, теории вероятностей (Coursera, edX, Khan Academy)

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Электронные библиотечные системы и электронные библиотеки: http://kosgos.ru/nauchnaya-biblioteka.html

Университетская библиотека ONLINE https://biblioclub.ru/

Znanium.com http://znanium.com/

Лань https://e.lanbook.com/

Электронная библиотека КГУ http://library.kosgos.ru

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения занятий по дисциплине необходимы учебная аудитория? (маркеры для доски), проектор, компьютеры (ноутбуки).