Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

НЕЙРОСЕТЕВОЕ МОДЕЛИРОВАНИЕ

Направление подготовки 01.03.02 «Прикладная математика и информатика» Направленность подготовки «Прикладная математика и информатика»

Квалификация (степень) выпускника: бакалавр

Кострома

2024

Рабочая программа дисциплины «Нейросетевое моделирование» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 01.03.02 Прикладная математика и информатика (уровень подготовки бакалавриат), утверждённым приказом №9 от 10.01.2018 г.

Разработал: Леготин Денис Леонидович, доцент, к.ф.-м.н., доцент

Рецензент: Сухов Андрей Константинович, доцент КГУ

ПРОГРАММА УТВЕРЖДЕНА:

На заседании кафедры прикладной математики и информационных технологий:

Протокол заседания кафедры №6 от 14.05.2024 г.

Заведующий кафедрой прикладной математики и информационных технологий

Ивков Владимир Анатольевич, к.э.н., доцент КГУ

1. Цели и задачи освоения дисциплины

Цель дисциплины: ознакомление с перспективным быстроразвивающимися направлением информатики - нейроинформатикой.

Задачи дисциплины:

познакомить студентов с базовыми понятиями нейроинформатики: нейрон, персептрон, нейронные сети, нейрокомпьютеры;

выработать практические навыки работы с простыми нейронными системами и освоить принципы их функционирования.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен:

освоить компетенцию:

ОПК-4 (способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности).

Код и содержание индикаторов компетенции:

- ОПК-4.1. Знает основные платформы, технологии и инструментальные программные средства, принципы проектирования баз данных для решения задач профессиональной деятельности.
- ОПК-4.2. Работает с основными инструментальными программными средствами с использованием существующих информационно-коммуникационных технологий.
- ОПК-4.3. Соблюдает нормы информационной безопасности в профессиональной деятельности.

Знать:

- базовые понятия нейроинформатики: нейрон, персептрон, нейронная сеть, нейрокомпьютер;
 - структуру и функции различных моделей нейронов;
 - историю и перспективы развития нейрокомпьютеров.

Уметь:

- строить модели различных типов нейронов;
- строить нейронные сети с прямой и обратной связью;
- проводить процесс обучения сети, тестировать её, использовать сеть для решения поставленной задачи (строить модель сети).

Владеть:

- техникой построения нейронных сетей для решения различных задач.

3. Место дисциплины в структуре ОП ВО

Дисциплина «Нейросетевое моделирование» относится к базовой части учебного плана, изучается в 7 семестре.

Для изучения дисциплины «Нейросетевое моделирование» необходимы знания, умения и навыки, формируемые предшествующими дисциплинами «Логическое программирование», «Прикладное программирование».

Дисциплина «Нейросетевое моделирование» интегрирует с дисциплинами «Теория вероятностей и математическая статистика» «Методы вычислительной математики» «Логические структуры и алгоритмы».

Компетенцию ОПК-4 также формируют дисциплины «Компьютерные сети», «Основы информационной безопасности», «Язык SQL и реляционные модели данных».

4. Объём дисциплины «Нейросетевое моделирование»

4.1. Объём дисциплины в зачётных единицах с указанием академических часов и виды учебной работы

Виды учебной работы,	Очная форма
Общая трудоемкость в зачетных единицах	3
Общая трудоемкость в часах	108
Аудиторные занятия в часах, в том числе:	40
Лекции	20
Практические занятия	-
Лабораторные занятия	20
Самостоятельная работа в часах	68
Форма промежуточной аттестации	Зачёт 7 сем.

4.2. Объём контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма
Лекции	20
Практические занятия	0
Лабораторные занятий	20
Консультации	-
Зачет/зачеты	-
Экзамен/экзамены	-
Курсовые работы	-
Всего	40

5. Содержание дисциплины «Нейросетевое моделирование», структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

No		Всего Аудиторные занятия			Самостоятельная	
	pudding pudding remar	з.е/час		Лекц.	Лаб.	работа
1	Ограничение машины Фон-Неймана. Рождение и развитие нейроинформатики	0,22/8	-	2	-	6
2	Биологический нейрон. Формальный нейрон Маккалоха-Питтса	0,22/8	-	2	-	6
3	Распознавание образов. Персептрон Розенблатта	0,42/15	-	2	5	8
4	Обучение Персептрона. Обратное распространение ошибки	0,42/15	-	2	5	8
5	Ассоциативная память. Сеть Хопфилда	0,42/15		2	5	8
6	Состязательное обучение. Самоорганизующиеся карты Кохонена	0,42/15		2	5	8
7	Сети Гроссберга	0,33/12		4	-	8
8	Вероятностные нейронные сети. Машина Больцмана	0,28/10		2	-	8
9	Области применения и перспективы развития нейрокомпьютеров	0,28/10		2	-	8
	Итого:	3/108	0	20	20	68

5.2. Содержание:

Тема 1. Ограничение машины Фон-Неймана. Рождение и развитие нейроинформатики. Ограничение машины Фон-Неймана. Предел быстродействия последовательных компьютеров. Два типа задач, решаемых человеком (качественные и количественные). Решение качественных задач мозгом. Мозг — нейронная сеть. История развития Искусственных Нейронных Сетей (ИНС).

Тема 2. Биологический нейрон. Формальный нейрон Маккалоха-Питтса. Биологический нейрон: морфология, электрофизиология, функционирование. Моделирование биологического прототипа. Формальный нейрон Маккалоха-Питтса. Реализация логических функций на формальных нейронах. Сеть из формальных нейронов — универсальный вычислитель. Надежный компьютер из ненадежных элементов. Модификация связей формального нейрона, принцип Хебба.

Тема 3. Распознавание образов. Персептрон Розенблатта. Распознавание образов, персептрон Розенблатта. Алгоритм обучения однослойного персептрона. Ограничения простого персептрона. Многослойный персептрон.

Тема 4. Обучение Персептрона. Обратное распространение ошибки.

Обучение многослойного персептрона с помощью алгоритма обратного распространения ошибки. Функция ошибки, проблема локального минимума.

- **Тема 5. Ассоциативная память. Сеть Хопфилда.** Ассоциативная память и возможность ее реализации с помощью ИНС. Сеть Хопфилда. Энергетический подход к проблеме распознавания образов. Распознавание зашумленных образов, емкость сети Хопфилда.
- **Тема 6.** Состязательное обучение. Самоорганизующиеся карты Кохонена. Обучение без учителя. Принцип состязательного обучения. Самоорганизующиеся карты Кохонена. Принцип топологического соответствия. Дилемма пластичности. Самообучение новым категориям.

Тема 7. Сети Гроссберга.

- **Тема 8. Вероятностные нейронные сети. Машина Больцмана.** Вероятностные нейронные сети. Машина Больцмана, метод отжига. Современные модели нейронов. Архитектура и типы ИНС. Методы обучения ИНС.
- **Тема 9. Области применения и перспективы развития нейрокомпьютеров.** Области применения и перспективы развития нейрокомпьютеров и нейросетевых алгоритмов.

6. Методические материалы для обучающихся по освоению дисциплины «Нейросетевое моделирование»

6.1. Самостоятельная работа обучающихся по дисциплине

№ п/п	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнению задания	Форма контроля
1	Ограничение машины Фон- Неймана. Рождение и развитие нейроинформатики	Написание реферата	6	Используйте рекомендованную	Устный опрос
2	Биологический нейрон. Формальный нейрон Маккалоха-Питтса	Анализ содержания учебных сайтов	6	Используйте рекомендованную литературу и интернет источники	Устный опрос
3	Распознавание образов. Персептрон Розенблатта	Компьютерный эксперимент: Создание модели персептрона	8	Используйте рекомендованную литературу и интернет источники	тестирование
4	Обучение Персептрона. Обратное распространение ошибки	Изучение литературы, решение задач	8	Используйте рекомендованную литературу и интернет источники	Контрольная
5	Ассоциативная память. Сеть Хопфилда	Анализ содержания сайтов, изучение литературы	8	Используйте рекомендованную литературу и интернет источники	Устный опрос

6	Состязательное обучение. Самоорганизующиеся карты Кохонена	Изучение литературы, моделирование карты Кохонена	8	Используйте рекомендованную литературу и интернет источники	Письменный опрос, тестирование
7	Сети Гроссберга	Написание реферата	8	Используйте рекомендованную литературу и интернет источники	Устный опрос
8	Вероятностные нейронные сети. Машина Больцмана	Изучение литературы	8	Используйте рекомендованную литературу и интернет источники	Письменный опрос
9	Области применения и перспективы развития нейрокомпьютеров	Изучение литературы, работа с нейронной системой	8	Используйте рекомендованную литературу и интернет источники	Индивидуальное собеседование, проверка домашних заданий

6.2. Тематика и задания для практических занятий

Не предусмотрено.

6.3. Тематика и задания для лабораторных занятий

№	Тема	Задания для лабораторных работ
п/п		
1	Распознавание образов. Персептрон Розенблатта	Распознавание образов, персептрон Розенблатта. Алгоритм обучения однослойного персептрона. Ограничения простого персептрона. Многослойный персептрон.
2	Обучение Персептрона. Обратное распространение ошибки	Обучение многослойного персептрона с помощью алгоритма обратного распространения ошибки. Функция ошибки, проблема локального минимума.
3	Ассоциативная память. Сеть Хопфилда	Обучение многослойного персептрона с помощью алгоритма обратного распространения ошибки. Функция ошибки, проблема локального минимума.
4	Состязательное обучение. Самоорганизующиеся карты Кохонена	Обучение без учителя. Принцип состязательного обучения. Самоорганизующиеся карты Кохонена. Принцип топологического соответствия. Дилемма пластичности. Самообучение новым категориям.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины «Нейросетевое моделирование»

а) Основная литература

1. Тарков, М. С. Нейрокомпьютерные системы : учеб. пособие / М. С. Тарков. - М. : ИНТУИТ : БИНОМ.ЛЗ , 2006. - 142 с. : ил. - (Основы информационных технологий). - Библиогр.: с. 139-140.

б) дополнительная литература:

- 2. Барский, Аркадий Бенционович. Нейронные сети: распознавание, управление, принятие решений / Барский, Аркадий Бенционович. М.: Финансы и статистика, 2007. 176 с. (Серия "Прикладные информационные технологии"). Библиогр.: с. 170-173.
- 3. Грин, Н. Биология.В 3-х т.: Пер.с англ. Т.2 / Н. Грин, У. Статут, Д. Тейлор; Под ред.Р.Сопера. М.: Мир, 1990. 325c.
- 4. Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский; Пер. с польск. И. Д. Рудинского. М.: Горячая линия-Телеком, 2004. 452 с.: ил. Библиогр. в конце глав. Предм. указ.: с. 381-383
- 5. Ясницкий, Л. Н. Введение в искусственный интеллект : Учеб. пособие для студ. высш. учеб. заведений / Л. Н. Ясницкий. М. : Академия, 2005. 176 с. (Высшее профессиональное образование). (Информатика и вычислительная техника). Библиогр.: с. 170-172.
- 6. Яхъяева, Г. Э. Нечеткие множества и нейронные сети : учеб. пособие / Г. Э. Яхъяева. М. : ИНТУИТ : БИНОМ.ЛЗ, 2006. 316 с. : ил. (Основы информационных технологий). Библиогр.: с. 315.
- 7. Чубукова, И. А. Data Mining : учеб. пособие / И. А. Чубукова. М. : ИНТУИТ : БИНОМ.ЛЗ , 2006. 382 с. : ил. (Основы информационных технологий). Библиогр.: с. 375-382.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

1. Библиотека ГОСТов. Все ГОСТы, [Электронный ресурс], URL: http://vsegost.com/

Электронные библиотечные системы:

- 1. ЭБС Университетская библиотека онлайн http://biblioclub.ru
- 2. ЭБС «Лань» https://e.lanbook.com
- 3. 9EC «ZNANIUM.COM» » http://znanium.com

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия проводятся в аудиториях с требуемым числом посадочных мест, оборудованные мультимедиа.

Лабораторные работы проводятся в компьютерных классах.

Лицензионное программное обеспечение:

Windows 8 Pro лицензия 01802000875623 постоянная 1-шт.

Свободно распространяемое программное обеспечение:

- офисный пакет;
- пакет Statistica Neural Networks;
- пакет Neural Network wizard.