МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

АЛГЕБРА

Направление подготовки: 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Направленности: Математика, физика

Квалификация выпускника: бакалавр

Кострома 2023

Рабочая программа дисциплины «Алгебра» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (уровень бакалавриата), утвержденным приказом Министерства образования и науки Российской Федерации от 22.02.2018 № 125 (зарегистрировано Министерством юстиции Российской Федерации 15.03.2018 регистрационный № 50358), с изменениями, внесенными приказом Министерства науки и высшего образования Российской Федерации от 08.02.2021 № 83 (зарегистрировано Министерством юстиции Российской Федерации 12.03.2021 регистрационный № 62739); в соответствии с учебным планом направления подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (направленности Математика, физика), годы начала подготовки 2023, 2024.

Разработал: Матыцина Т. Н., заведующий кафедрой высшей математики, к. ф.-м. н., доцент

Рецензент: Бобков Н. Н., директор муниципального бюджетного общеобразовательного учреждения города Костромы «Лицей № 34», к. ист. н., доцент

УТВЕРЖДЕНО:

Заведующий кафедрой высшей математики:

Матыцина Т. Н., к. ф.-м. н., доцент

Протокол заседания кафедры № 8 от 05.05.2023 г.

ПРОГРАММА ПЕРЕУТВЕРЖДЕНА:

На заседании кафедры высшей математики

Протокол заседания кафедры № 5 от 19.03.2024 г.

Заведующий кафедрой высшей математики

Матыцина Т. Н., к. ф.-м. н., доцент

1. Цели и задачи освоения дисциплины

Цель дисциплины:

Формирование у студентов понимания основных видов алгебр и воспитания у них общей алгебраической культуры, необходимой как для глубокого понимания школьного курса математики, так и для освоения смежных математических дисциплин. Формирование представления об основах математической логики и дискретной математики.

Задачи дисциплины:

- изучить основные понятия линейной алгебры;
- научить студентов действиям с комплексными числами;
- изучить кольца многочленов от одной и нескольких переменных над полем, кольца многочленов над числовыми полями, основную теорему алгебры;
- познакомить студентов с основными алгебрами и алгебраическими системами;
- познакомить студентов с формализацией математического языка («Алгебра высказываний»,
 «Логика предикатов»);
- научить доказывать равносильность формул алгебры высказываний и логики предикатов;
- научить решать логические задачи;
- познакомить студентов с основами аксиоматических теорий;
- изучить аксиоматические теории «Исчисление высказываний»; «Исчисление предикатов»;
- сформировать представления о значении и областях применения дискретной математики;
- получить знания о методе математической индукции, об основных комбинаторных конфигурациях, о рекуррентных соотношениях и методах их решений, об основных понятиях и методах теории графов;
- научить доказывать утверждения с помощью метода математической индукции;
- научить решать комбинаторные задачи и линейные рекуррентные соотношения с постоянными коэффициентами;
- получить навыки по применению аппарата теории графов для решения оптимизационных задач;
- научить решать задачи о максимальном потоке и минимальном разрезе и о потоке минимальной стоимости в сетях.

Кроме того, одной из задач изучения данного курса является научно-образовательное, профессионально-трудовое воспитание обучающихся посредством содержания дисциплины и актуальных воспитательных технологий.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен освоить компетенции:

ОПК-8 - способен осуществлять педагогическую деятельность на основе специальных научных знаний

Код и содержание индикаторов компетенции:

ИОПК-8.1. Демонстрирует владение системой специальных научных знаний в предметной области

ИОПК-8.2. Применяет специальные предметные знания в педагогической деятельности по направленности программы.

Знать:

основные понятия теории множеств; основные понятия теории матриц, понятие определителя, свойства определителей, теорему Лапласа, понятия евклидова и векторного пространств, свойства линейных операторов, свойства собственных векторов, понятие комплексного числа, различные формы его записи, различные способы решения систем линейных уравнений; основные понятия теории многочленов от одной переменной над полем (корень многочлена, наибольший общий делитель многочленов, приводимость и неприводимость многочленов над полем); основные понятия теории многочленов от нескольких переменных, симметрические многочлены; свойства колец многочленов над числовыми полями; соответствия, отношения, отображения, операции; основные понятия, связанные с группами, кольцами, полями; основные понятия математической логики, способы доказательства равносильности формул алгебры

высказываний и логики предикатов; способы доказательства выводимости формул исчисления исчисления предикатов; теоремы изученных высказываний основные разделов математической логики; основные понятия и методы дискретной математики

Уметь:

выполнять операции над множествами; успешно выполнять действия над матрицами, вычислять определители, решать системы линейных уравнений методом Гаусса, методом Крамера, методом обратной матрицы, находить фундаментальный набор решений однородной системы линейных уравнений, выполнять действия с векторами, находить базис и ранг системы векторов, приводить матрицу линейного оператора к диагональному виду, приводить квадратичную форму к каноническому виду; выполнять действия над многочленами, находить их наибольший общий делитель и наименьшее общее кратное, применять схему Горнера; находить целые и рациональные корни многочленов с целыми коэффициентами; решать уравнения третьей и четвертой степеней; определять свойства отношений и отображений; определять вид алгебры; строить фактор-группы и фактор-кольца, доказывать равносильность формул, использовать технику логических преобразований; формально доказывать формулы исчисления высказываний и предикатов; доказывать основные теоремы математической логики; решать логические задачи; пользоваться основными методами дискретной математики для решения практических задач с целью подготовки студентов к преподаванию предметов в среднем образовательном учреждении, базирующихся на методах дискретной математики, а также в той или иной мере использующих их.

Владеть:

навыками решения задач по всем разделам курса; техникой логических преобразований; навыками формализации и решения практических задач методами дискретной математики в рамках формируемых компетенций

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к обязательной части учебного плана. Изучается в 1, 2, 3, 4, 5 семестрах обучения.

Изучение дисциплины основывается на ранее освоенных дисциплинах/практиках:

курс элементарной математики, изучаемый в среднем общеобразовательном учреждении.

Изучение дисциплины является основой для освоения последующих дисциплин/практик:

Организация исследовательской деятельности в системе образования, Математический анализ, Геометрия, Механика, Молекулярная физика, Электричество и магнетизм, Оптика, Атомная и ядерная физика, Теория вероятностей и математическая статистика, Астрономия, Дифференциальные уравнения, учебная практика (ознакомительная), производственная образовательно-воспитательная), производственная (педагогическая, (педагогическая по физике), производственная практика (педагогическая по математике), Подготовка к сдаче и сдача государственного экзамена, Выполнение и защита выпускной квалификационной работы.

4. Объем дисциплины

4.1. Объем дисциплины в зачетных единицах с указанием академических часов и виды учебной работы

Виды учебной работы,	Очная форма
Общая трудоемкость в зачетных единицах	18
Общая трудоемкость в часах	648
Аудиторные занятия в часах, в том числе:	196
Лекции	96
Практические занятия	100
Лабораторные занятия	_

Практическая подготовка	_
Самостоятельная работа в часах	298,35 + 144
Форма промежуточной аттестации	экзамен в 1, 2, 3, 5 семестрах – 1,4 часа
	Консультации к экзаменам (8 часов)
	зачет с оценкой в 4 семестре – 0,25 часа
	курсовая работа в 5 семестре

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная
	форма
Лекции	96
Практические занятия	100
Лабораторные занятия	_
Консультации	8
Зачет/зачеты	0,25
Экзамен/экзамены	1,4
Курсовые работы	3
Курсовые проекты	_
Практическая подготовка	_
Всего	208,65

5. Содержание дисциплины, структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

			Аудиторные занятия			
№	Название раздела, темы	Всего з.е/час	Лекц.	Практ.	Лаб.	Самостоятельная работа
1.	Множества	9	4	2	-	3
2.	Бинарные отношения	6	2	2		2
3.	Комплексные числа и операции над ними	8	2	4		2
4.	Матрицы и действия над ними	6	2	2	-	2
5.	Определители <i>n</i> -го порядка	9	2	4	-	3
6.	Ранг матрицы. Обратная матрица	8	2	2	-	4
7.	Системы линейных алгебраических уравнений	12	4	4	-	4
8.	Арифметическое <i>п</i> -мерное векторное пространство	7	2	1	-	4
9.	Векторные (линейные) пространства	7	3	1	-	3
10.	Линейные операторы	8	3	2	_	3
11.	Собственные векторы и собственные значения линейного оператора	7	2	2	-	3
12.	Жорданова нормальная форма матрицы линейного оператора	7	2	2	-	3
13.	Билинейные формы	7	2	2	-	3

14. Квадратичные формы 4,65 2 2 ИКР (консультация к экзамену, экзамен) 2,35 - - Экзамен 36 - - Всего за 1 семестр: 4/144 34 32 15. Многочлены от одной переменной 24 3 3	-	- 36
Экзамен) 2,35	-	36
Экзамен 36 Всего за 1 семестр: 4/144 34 32 3 3 3	-	36
Всего за 1 семестр: 4/144 34 32 32 Многочлены от одной 24 3 3	-	50
15 Многочлены от одной 24 3 3		39,65+36
переменной	_	18
l		10
16. Многочлены от нескольких переменных 28 5 5	-	18
Миогондени и на полем		
17. МНОГОЧЛЕНЫ НАД ПОЛЕМ 26 4 4	-	18
Многочлены над полем		
18. действительных чисел, 27,65 4 4	_	19,65
рациональных чисел		15,05
ИКБ (консуштания к экзамену		
экзамен)	-	-
Экзамен 36	_	36
Всего за 2 семестр: 4/144 16 16	_	73,65+36
19. Алгебра высказываний 30 6	_	18
20. Исчисление высказываний 28 4 6	_	18
21. Логика предикатов 28 4 6	_	18
21. Исчисление предикатов 19,65 4 2		13,65
MKD (KOHOMII TAHMU K AKSAMAHA)		13,03
экзамен)	-	-
Экзамен 36	-	36
Всего за 3 семестр: 4/144 18 20	_	67,65+36
23. Алгебраические структуры 40 6 4	-	30
24. Фактор-группы. Фактор-кольца 31,75 2 4	-	25,75
ИКР (зачет с оценкой) 0,25	-	_
Всего за 4 семестр: 2/72 8 8	-	55,75
Метоп математинеской		
25 индукции 4 0 2	-	2
26 Основные комбинаторные 10 2 2		6
26 конфигурации 10 2 2	-	6
27 Рекуррентные соотношения 16 2 8	_	6
28 Теория графов 28 14 8	-	6
29 Потоки в сетях 11,65 2 4	-	5,65
Курсовая работа 36 – –	_	36
ИКР (консультация к экзамену		
экзамен)	-	-
Экзамен 36 – –	_	36
Всего за 5 семестр: 4/144 20 24	_	61,65+36
25 25 25 CONTROLL 1/111 20 27		01,05150
Итого: 18/648 96 100	-	

5.2. Содержание:

Тема 1. Множества. Равенство множеств, включение множеств. Операции над множествами и их свойства. Разбиение на классы. Прямое произведение множеств. Правило суммы и правило произведения.

Тема 2. Бинарные отношения. Понятие отношения. Способы заданий бинарных отношений. Операции над бинарными отношениями. Свойства бинарных отношений. Отношение эквивалентности. Функции.

Тема 3. Комплексные числа и операции над ними. Понятие комплексного числа. Операции над комплексными числами. Геометрическая интерпретация комплексных чисел.

Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме. Показательная форма комплексного числа.

- **Тема 4. Матрицы и операции над ними.** Основные понятия. Основные операции над матрицами и их свойства: сложение однотипных матриц, умножение матрицы на действительное число, умножение согласованных матриц. Транспонирование матриц.
- **Тема 5. Определители** *n***-го порядка**. Определители матриц второго и третьего порядка. Определитель матрицы*n*-го порядка. Свойства определителей. Теорема Лапласа и ее следствия. Практическое вычисление определителей.
- **Тема 6. Ранг матрицы. Обратная матрица.** Понятие ранга матрицы. Нахождение ранга матрицы методом окаймления миноров. Нахождение ранга матрицы с помощью элементарных преобразований. Понятие обратной матрицы и способы ее нахождения.
- **Тема 7.** Системы линейных уравнений. Основные понятия и определения. Методы решения систем линейных уравнений: метод Крамера, метод обратных матриц, метод Гаусса. Исследование систем линейных уравнений. Однородные системы линейных уравнений. Свойства решений системы линейных уравнений. Фундаментальный набор решений однородной системы линейных уравнений.
- **Тема 8. Арифметическое** *п***-мерное векторное пространство.** Основные понятия. Линейная зависимость и независимость системы векторов. Свойства линейной зависимости системы векторов. Единичная система векторов. Две теоремы о линейной зависимости. Базис и ранг системы векторов. Практическое нахождение ранга и базиса системы векторов.
- **Тема 9. Векторные (линейные) пространства.** Определение векторного пространства над произвольным полем. Простейшие свойства векторных пространств. Подпространства, пересечение и сумма подпространств. Линейные многообразия. Базис и размерность векторного пространства. Конечномерные векторные пространства. Координаты вектора относительно данного базиса. Координаты вектора в различных базисах. Евклидовы векторные пространства. Скалярное произведение в координатах. Метрические понятия. Ортонормированный базис евклидова векторного пространства. Процесс ортогонализации. Скалярное произведение в ортонормированном базисе. Ортогональное дополнение подпространства.
- **Тема 10.** Линейные операторы. Основные понятия и способы задания линейных операторов. Матрица линейного оператора. Матрица линейного оператора в различных базисах. Подобные матрицы. Действия над линейными операторами: сложение, умножение на элемент поля, умножение. Связь между действиями нал линейными операторами и действиями над их матрицами. Ядро и образ (дефект и ранг) линейного оператора. Обратимые линейные операторы.
- **Тема 11.** Собственные значения и собственные векторы линейного оператора. Собственные векторы линейного оператора; их свойства и нахождение. характеристический многочлен матрицы. Алгоритм нахождения собственных векторов линейного оператора. Условия, при которых матрица подобна диагональной матрице.
- **Тема 12. Жорданова нормальная форма матрицы линейного оператора.** Понятие λ-матрицы. Жорданова нормальная форма. Приведение матрицы к жордановой нормальной форме. Алгоритм приведения матрицы к жордановой нормальной форме. Примеры.
- **Тема 13. Билинейные формы.** Основные понятия и свойства билинейных форм. Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы.
- **Тема 14. Квадратичные формы.** Основные определения. Матрица квадратичной формы. Приведение квадратичной формы к каноническому виду. Основная теорема о квадратичных формах. Закон инерции квадратичных форм. Классификация квадратичных форм. Необходимое и достаточное условие знакоопределенности квадратичной формы. Необходимое и достаточное условие квазизнакопеременности квадратичной формы. Критерий Сильвестра.
- **Тема 15. Многочлен от одной переменной.** Делимость многочленов. Деление с остатком. Корни многочлена. Теорема Безу. Схема Горнера. Кратные корни. Приводимые и неприводимые над полем многочлены. НОД и НОК многочленов.

- **Тема 16. Многочлены от нескольких переменных.** Однородные многочлены. Симметрические многочлены. Основная теорема о симметрических многочленах. Формулы Виета.
- **Тема 17. Многочлены над полем комплексных чисел.** Основная теорема алгебры. Приводимость многочленов над полем комплексных чисел. Решение уравнений третьей и четвертой степеней.
- **Тема 18. Многочлены над полем действительных чисел, полем рациональных чисел.** Теоремы о корнях многочленов в множестве действительных чисел, множестве рациональных чисел. Приводимость многочленов над полем R и Q. Расширение полей.
- **Тема 19. Алгебра высказываний.** Введение. Дедуктивный характер математики. Предмет математической логики, ее роль в вопросах обоснования математики. Тенденции в развитии современной математической логики. Логика высказываний. Логические операции над высказываниями. Язык логики высказываний, формулы. Истинностные значения формул. Равносильность. Равносильные преобразования формул. Представление истинностных функций формулами. Тавтологии законы логики.
- **Тема 20. Исчисление высказываний.** Принципы построения исчислений высказываний (гильбертовского или генценовского типа). Классическое и конструктивное (интуиционистское) исчисления. Аксиомы, правила вывода. Доказуемость формул. Выводимость из гипотез. Производные правила. Теорема дедукции. Характеристики исчислений высказываний непротиворечивость, полнота, разрешимость и связанные с ними теоремы. Независимость аксиом, правил вывода. Законы исключенного третьего и снятия двойного отрицания законы классической логики. Эффективные и неэффективные доказательства.
- **Тема 21. Логика предикатов.** Предикаты и кванторы. Язык логики предикатов. Термы и формулы. Языки первого порядка. Интерпретации. Значение формулы в интерпретации. Равносильность. Общезначимость и выполнимость формул. Проблема общезначимости, неразрешимость ее в общем случае. Применение языка логики предикатов для записи математических предложений, построение отрицаний предложений.
- **Тема 22. Исчисление предикатов.** Формализованные математические теории. Теории первого порядка. Аксиомы теории, правила вывода. Доказательства в теории. Характеристики теорий: непротиворечивость, полнота, разрешимость. Непротиворечивость исчисления предикатов. Модели теорий. Теорема о полноте для теорий.
- **Тема 23. Алгебраические структуры.** Алгебраические операции. Свойства бинарных алгебраических операций: коммутативность, ассоциативность, дистрибутивность, сократимость, нейтральный элемент, симметричный элемент. Подмножества, замкнутые относительно бинарной алгебраической операции. Алгебры с одной бинарной операцией (группоид, полугруппа, моноид, группа). Алгебры с двумя бинарными операциями (кольцо, область целостности, поле). Конечные и бесконечные множества. Конечные поля. Булевы алгебры. Гомоморфизм алгебр. Алгебраические системы. Решетки.
- **Тема 24. Фактор-группы. Фактор-кольца.** Подгруппы. Нормальные делители. Фактор-группа. Теоремы о гомоморфизмах групп. Подкольца. Идеалы кольца. Фактор-кольца. Теоремы о гомоморфизмах колец. Кольца главных идеалов, евклидовы и факториальные кольца.
- **Тема 25. Метод математической индукции.** Принцип метода математической индукции. Алгоритм метода математической индукции. Применение метода математической индукции для доказательства утверждений, зависящих от натурального параметра *n*.
- **Тема 26. Основные комбинаторные конфигурации.** Правила суммы и произведения. Метод включений и исключений. Размещения без повторений и с повторениями. Их число. Перестановки без повторений и с повторениями. Их число. Сочетания с повторениями и без повторений. Их число. Бином Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. Полиномиальная теорема.
- **Тема 27. Рекуррентные соотношения.** Задачи, приводящие к рекуррентным соотношениям. Линейные рекуррентные соотношения с постоянными коэффициентами. Способы решения рекуррентных соотношений. Алгоритм решения ЛОРС и ЛРС. Суммы и рекуррентности. Преобразования сумм. Кратные суммы. Некоторые методы суммирования.
- **Тема 28. Теория графов**. Основные понятия теории графов. Определение и разновидности графов. Способы задания графов. Изоморфизм графов. Подграф и часть графа.

Клика. Звезда вершины графа. Операции над графами. Маршруты, цепи, циклы. Связность. Нахождение сильных компонент орграфа. Выявление маршрутов с заданным количеством ребер. Метрические характеристики графа. Понятие сети. Матрица весов. Нахождение кратчайших путей в ориентированной сети с помощью алгоритма Дейкстры и Беллмана-Мура. Деревья и их свойства, лес. Задача об остове экстремального веса. Алгоритм Прима. Эйлеровы циклы и цепи. Эйлеровы графы. Необходимые и достаточные условия существования эйлерова цикла в графе. Алгоритм Флери. Гамильтоновы графы и циклы. Необходимые и достаточные условия существования гамильтонова цикла в графе. Задача коммивояжера. Решение задачи коммивояжера методом ветвей и границ. Планарные графы. Укладка графа. Теорема Эйлера, теорема Понтрягина-Куратовского. Понятия искаженности и толщины непланарных графов. Алгоритм укладки графа на плоскости. Раскраски графов. Хроматические графы. Алгоритм последовательной раскраски графа.

Тема 29. Потоки в сетях. Основные понятия. Теорема Форда-Фалкерсона. Алгоритм Форда-Фалкерсона построения максимального потока и минимального разреза. Поток минимальной стоимости. Математическая модель задачи о потоке минимальной стоимости и ее общее решение.

6. Методические материалы для обучающихся по освоению дисциплины

Литература для проведения практических занятий и самостоятельной работы обучающихся:

- [1] Матыцина, Т.Н. Линейная алгебра: учебно-методическое пособие / Т.Н. Матыцина, Е.К. Коржевина; Министерство образования и науки Российской Федерации, Костромской государственный университет имени Н. А. Некрасова. Кострома: КГУ им. Н. А. Некрасова, 2014,2015. 151 с.: ил., табл., схем. ISBN 978-5-7591-1432-1; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=275642
- [2] Матыцина, Татьяна Николаевна. Линейная алгебра [Электронный ресурс] : учеб.-метод. пособие / Т. Н. Матыцина, Е. К. Коржевина ; М-во образования и науки Российской Федерации, Костромской гос. ун-т им. Н. А. Некрасова. Электрон. текст. дан. Кострома : КГУ, 2014. 151 с. Загл. с экрана. ISBN 978-5-7591-1432-1 : Б. ц.
- [3] Матыцина, Татьяна Николаевна. Линейная алгебра : практикум / Т. Н. Матыцина, Е. К. Коржевина ; М-во образования и науки РФ, Костром. гос. ун-т им. Н. А. Некрасова. Кострома : КГУ, 2016. 68, [2] с. Имеется электрон. ресурс. Библиогр.: с. 68-69. ISBN 978-5-7591-1525-0 : 31.60.
- [4] Проскуряков, И.В. Сборник задач по линейной алгебре / И.В. Проскуряков. Изд. 3-е. Москва : Наука, 1966. 381 с. : ил. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=464077 (22.02.2018).
- [5] Фаддеев, Д.К. Задачи по высшей алгебре [Электронный ресурс] : учеб. / Д.К. Фаддеев, И.С. Соминский. Электрон. дан. Санкт-Петербург : Лань, 2008. 288 с. Режим доступа: https://e.lanbook.com/book/399 Загл. с экрана.
- [6] Варпаховский, Ф. Л. Алгебра : Группы, кольца, поля. Векторные и евклидовы пространства. Линейные отображения : учеб. пособие для студ.-заоч. 1 курса физ.-мат. фак. пед. ин-тов. М. : Просвещение, 1978. 144 с. 0.30.
- [7] Лавров, И.А. Задачи по теории множеств, математической логике и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. 5-е изд., исправл. Москва : Физматлит, 2002. 258 с. ISBN 5-9221-0026-2 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=75576 (20.02.2018).
- [8] Мендельсон, Э. Введение в математическую логику / Э. Мендельсон; пер. с англ. Ф.А. Кабакова; под ред. С.И. Адян. Москва: Наука, 1971. 320 с.: ил.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=458257 (20.02.2018).
- [9] Гиндикин, С.Г. Алгебра логики в задачах / С.Г. Гиндикин ; под ред. Ю.А. Гастева, В.В. Донченко. Москва : Наука, 1972. 288 с. : ил. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=449478 (20.02.2018).
- [10] Сидоров, А. В. Математическая логика: алгебра логики: учеб.-метод. пособие. Ч. 1. Кострома: КГУ, 2006. 32 с. 15.00. Электронные ресурсы: Book100158

- [11] Чередникова, А. В.Дискретная математика: теория и практика: учеб. пособие для вузов / А.В. Чередникова, О.Б. Садовская, Л.А. Каминская. Кострома: КГТУ, 2012; 2011. –75 с.: рис. обязат. ISBN 978-5-8285-0585-2: 6.93.
- [12] Шапорев, С.Д. Дискретная математика: курс лекций и практических занятий: учеб. пособие для студ. вузов: допущено. СПб.: БХВ-Петербург, 2007. 400 с. Предм. указ.: с. 393-396. ISBN 978-5-94157-703-3: 227.00.
- [13] Матыцина, Т.Н.Дискретная математика. Решение рекуррентных соотношений: практикум / М-во образования и науки Российской Федерации, Костромской гос. ун-т им. Н. А. Некрасова. Кострома: КГУ, 2010. 33, [2] с. Библиогр.: с. 34. 2.70.
- [14] Гаврилов Г.П., Сапоженко А.А.Задачи и упражнения по дискретной математике: Учеб. пособие. 3-е изд., перераб. М.: ФИЗМАТЛИТ, 2009. 416 с. ISBN 978-5-9221-0477-7
- [15] Лунгу, К.Н. Задачи по математике / К.Н. Лунгу, Е.В. Макаров. М.: ФИЗМАТЛИТ, 2008. 336 с. ISBN 978-5-9221-1001-3.
- [16] Сборник задач по алгебре / И.В. Аржанцев и др. Под ред. А.И. Кострикина: Учеб. Пособие для вузов. Новое издание, справленное. М.: МЦНМО, 2009.-408 с. ISBN 978-5-94057-413-2
- [17] Судоплатов, С.В. Дискретная математика: учебник для вузов. 2-е изд., перераб. Москва; Новосибирск: Инфра-М НГТУ, 2007. 256 с. (Высш. образование). МО РФ. ЕН. ISBN 5-16-002299-6. —ISBN 5-7782-0466-3: 104.00.
 - http://biblioclub.ru/index.php?page=book red&id=135675&sr=1
- [18] Чередникова, А.В. Введение в теорию графов: учеб.-метод. пособие / А.В. Чередникова, И.В. Землякова. Кострома: КГТУ, 2012. 28 с. ЕН. обязат. б.ц. Электронная библиотека КГУ Введение в теорию графов 227510
- [19] Дискретная математика. Часть 1: учебное пособие / И.П. Болодурина, Т.М. Отрывкина, О.С. Аранова, Т.А. Огурцова; Оренбургский гос. ун-т. Оренбург: ОГУ, 2016. 108 с. ISBN 978-5-7410-1579-7
 - http://biblioclub.ru/index.php?page=book_red&id=467106&sr=1
- [20] Грэхем, Р. Конкретная математика. Основание информатики: Пер. с англ. / Р. Грэхем, Д. Кнут, О. Паташник. М.: Мир, 1998. 703 с. ISBN 5-03-001793-3: 100.62.
- [21] Матыцина, Т.Н. Дискретная математика. Основы теории графов учебно.-методическое пособие [Текст]/ Т. Н. Матыцина Кострома : КГУ, 2013. 111 с.

6.1. Самостоятельная работа обучающихся по дисциплине (модулю)

№ п/п	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнению задания	Форма контроля
1.	Множества	Работа с учебной литературой. Выполнение домашних заданий.	3	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий.
2.	Бинарные отношения	Изучение литературы. Решение задач	2	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий.
3.	Комплексные числа и операции над ними	Изучение литературы. Решение задач.	2	Лекционный материал, [1], [2], [3]	Опрос. Индивидуальное домашнее задание
4.	Матрицы и действия над ними	Изучение литературы. Решение задач	2	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий.

	1			T	
5.	Определители <i>п</i> -го порядка	Изучение литературы. Решение задач.	3	Лекционный материал, [1], [2], [3]	Опрос. Индивидуальное домашнее задание
6.	Ранг матрицы. Обратная матрица	Изучение литературы. Выполнение домашних заданий	4	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий. Индивидуальное домашнее задание
7.	Системы линейных алгебраических уравнений	Работа с учебной литературой. Решение задач	4	Лекционный материал, [1], [2], [3]	Индивидуальное домашнее задание
8.	Арифметическое <i>п</i> -мерное векторное пространство	Работа с учебной литературой.	4	Лекционный материал, [1], [2], [3]	Опрос.
9.	Векторные (линейные) пространства	Изучение литературы. Выполнение домашних заданий	3	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий.
10.	Линейные операторы	Изучение литературы. Решение задач.	3	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий.
11.	Собственные векторы и собственные значения линейного оператора	Работа с учебной литературой. Решение задач	3	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий
12.	Жорданова нормальная форма матрицы линейного оператора	Изучение литературы. Выполнение домашних заданий	3	Лекционный материал, [1], [2], [3]	Опрос. Проверка домашних заданий
13.	Билинейные формы	Изучение литературы. Решение задач.	3	Лекционный материал, [1], [2], [3]	Проверка выполнения домашнего заданий
14.	Квадратичные формы	Изучение литературы. Решение задач	0,65	Лекционный материал, [1], [2], [3]	Опрос. Индивидуальное домашнее задание
	Подготовка к сдаче экзамена	Изучение литературы. Решение типовых задач	36	Лекционный материал, [1], [2], [3]	Экзамен
15.	Многочлены от одной переменной	Изучение литературы. Решение задач.	18	Лекционный материал, [5]	Опрос. Проверка домашнего задания. Творческое задание.
16.	Многочлены от нескольких переменных	Работа с учебной литературой. Решение задач	18	Лекционный материал, [5]	Опрос. Проверка домашних заданий

17.	Многочлены над полем комплексных чисел	Изучение литературы. Решение задач.	18	Лекционный материал, [5]	Опрос. Проверка домашних заданий. Творческое задание.
18.	Многочлены над полем действительных чисел, рациональных чисел	Изучение литературы. Решение задач.	19,65	Лекционный материал, [5]	Опрос. Творческое задание.
	Подготовка к сдаче экзамена	Изучение литературы. Решение типовых задач	36	Лекционный материал, [5]	Экзамен
19.	Алгебра высказываний	Изучение теории. Решение задач	18	Лекционный материал, [10]	Проверка домашних работ. Индивидуальное домашнее задание
20.	Исчисление высказываний	Изучение теории. Решение задач	18	Лекционный материал, [7] (часть 2, § 3)	Проверка домашних работ, опрос
21.	Логика предикатов	Изучение теории. Решение задач	18	Лекционный материал, [7] (часть 2, § 4, 5)	Проверка домашней работы.
22.	Исчисление предикатов	Изучение теории	13,65	Лекционный материал, [7] (часть 2, § 6)	Опрос. Экзамен
	Подготовка к сдаче экзамена	Изучение литературы. Решение типовых задач	36	Лекционный материал	Экзамен
23.	Алгебраические структуры	Изучение литературы. Решение задач.	30	Лекционный материал, [1], [2], [6]	Проверка выполнения домашнего заданий
24.	Фактор-группы. Фактор-кольца	Работа с учебной литературой. Выполнение домашних заданий	25,75	Лекционный материал, [1], [2], [6] (глава 1, § 1-7)	Тестирование. Опрос
25.	Метод математической индукции	Выполнение д/з.	2	[15], [16]	Разбор домашних заданий
26.	Основные комбинаторные конфигурации	Изучение теоретического материала лекций. Выполнение д/з.	6	Лекционный материал,[17], [11], [12], [13]	Опрос на практическом занятии, экзамен Разбор домашних заданий

27.	Рекуррентные соотношения	Изучение теоретического материала лекций. Выполнение д/з.	6	Лекционный материал, [12], [13]	Опрос на практическом занятии. Творческое задание.
28.	Теория графов	Изучение теоретического материала лекций. Выполнение д/з.	6	Лекционный материал, [17], [12], [18], [19]	Опрос на практическом занятии. Индивидуальное домашнее задание
29.	Потоки в сетях	Изучение теоретического материала лекций.	5,65	Лекционный материал, [12], [19]	Опрос на практическом занятии
	Подготовка курсовой работы	Изучение теоретического материала	36	[1]-[20]	Защита курсовой работы
	Подготовка к экзамену.	Изучение литературы. Решение типовых задач	36	Лекционный материал, [17], [11], [12], [13], [18], [14], [15], [16], [19]	Экзамен

6.2. Тематика и задания для практических занятий

Множества

Литература, необходимая для занятия: [3] № 1.1–1.25

Бинарные отношения

Литература, необходимая для занятия: [3] № 3.1–3.27

Комплексные числа и операции над ними

Литература, необходимая для занятия: [3] № 2.1–2.27

Литература, необходимая для занятия: [5]№ 101, 105 a) b), 107 a) c), 108, 109 a), 112 c) d), 118, 119 a) g) f) j), 123 a), 124 a) b).

Матрицы и действия над ними

Литература, необходимая для занятия: [3] № 4.1–4.12

Индивидуальное домашнее задание№2 ([3], стр. 55)

Литература, необходимая для занятия: [4]№ 788, 790, 796, 799, 802, 827.

Определители *n*-го порядка

Литература, необходимая для занятия: [3] № 5.1–5.8

Индивидуальное домашнее задание№4 ([3], стр. 57-60)

Литература, необходимая для занятия: [4]№ 3, 4, 5, 22, 23, 43, 44, 74, 257, 259, 261, 266.

Ранг матрицы. Обратная матрица

Литература, необходимая для занятия: [3] № 6.1–6.11

Индивидуальное домашнее задание№3 ([3], стр. 56-57)

Литература, необходимая для занятия: [4]№ 836, 861, 840, 862, 75, 76, 838, 608, 613, 619.

Системы линейных алгебраических уравнений

Литература, необходимая для занятия: [3] № 7.1–7.14

Индивидуальное домашнее задание№5 ([3], стр. 60-62)

Литература, необходимая для занятия: [4] № 689, 693, 692, 700, 701, 713, 715, 716.

Арифметическое *п*-мерное векторное пространство

Литература, необходимая для занятия: [3] № 8.1–8.13

Литература, необходимая для занятия: [4]№ 636, 637, 639, 641, 643, 665, 672, 673, 674, 675, 679.

Векторные (линейные) пространства

Литература, необходимая для занятия: [3] № 9.1–9.25

Индивидуальное домашнее задание№1 ([3], стр. 54)

Литература, необходимая для занятия: [4] № 1285, 1288, 1291, 1297, 1310, 1317, 1320.

Линейные операторы

Литература, необходимая для занятия: [3] № 10.1–10.15

Литература, необходимая для занятия: [4] № 1441, 1443, 1448, 1449 а), 1452 а), 1453, 1457.

Собственные векторы и собственные значения линейного оператора

Литература, необходимая для занятия: [3] № 10.16–10.21

Литература, необходимая для занятия: [4] № 1465, 1467, 1468, 1470, 1466.

Жорданова нормальная форма матрицы линейного оператора

Литература, необходимая для занятия: [3] № 11.1–11.2

Литература, необходимая для занятия: [4]1479, 1480, 1472, 1481, 1483

Билинейные формы

Литература, необходимая для занятия: [3] № 12.1–12.5

Литература, необходимая для занятия: [4] № 1175, 1180, 1187, 1212, 1213, 1180.

Квадратичные формы

Литература, необходимая для занятия: [3] № 12.1–12.5

Индивидуальное домашнее задание№6,7,8 ([3], стр. 62-66)

Многочлены от одной переменной

Элементарные действия над многочленами (сложение, умножение, деление с остатком).

Схема Горнера. Простые и кратные корни

Литература, необходимая для занятия: [5]№ 549 a) c) d), 550 a) b), 551 a) b) d), 552 a), 553 a), 555 a), 557.

Наибольший общий делитель многочленов и его линейное представление

Литература, необходимая для занятия: [5] № 577 c), 577 b), 579 d), 580 a), 684 a) c).

Приводимые и неприводимые над полем многочлены. Отделение неприводимых кратных множителей

Литература, необходимая для занятия: [5] № 587 a) d), 593 a) c), 597 a), 585 d) e) b).

Дополнительные задачи:

- 1) а) Найти наибольший общий делитель многочленов $f(x) = x^4 + 6x^3 + 5x^2 8x + 16$ и $h(x) = x^3 + x^2 7x + 20$.
- б) Пользуясь алгоритмом Евклида, найти u(x) и v(x) такие, что $f(x) \cdot u(x) + h(x) \cdot v(x) = d(x)$, если $f(x) = 3x^3 2x^2 + x + 2$, $h(x) = x^2 x 1$.
- 2) а) С помощью схемы Горнера разложить по степеням (x-2) многочлен $f(x)=x^5-4x^3+6x^2-8x+10$. Найти $f^{(IV)}(2)$.
- б) Определить кратность корня x = 3 для многочлена $f(x) = x^4 6x^3 + 10x^2 6x + 9$.
- 3) Освободиться от алгебраической иррациональности в знаменателе дроби
- а) $\frac{\alpha}{\alpha^2 + 1}$, где α корень уравнения $x^3 + 3x^2 3x + 6 = 0$;

6)
$$\frac{1}{\sqrt[3]{25} + 4\sqrt[3]{5} + 1}$$
.

- 4) Отделить кратные множители многочлена
- a) $f(x) = x^4 + 4x^3 2x^2 12x + 9$
- 6) $f(x) = x^5 15x^3 10x^2 + 60x + 72$
- 5) Найти наибольший общий делитель многочлена f(x) и его производной f'(x)
- a) $f(x) = (x-1)(x^2-1)(x^3-1)(x^4-1)$
- 6) $f(x) = (x^2 + x + 1)^3 (x 1)^4$

Многочлены от нескольких переменных

Литература, необходимая для занятия: [5] № 693 a) c) e), 694 a), 695 a) f), 697 a), 699, 700, 702 a).

Многочлены над полем комплексных чисел

Литература, необходимая для занятия: [5] № 589 a) b), 590 a) e) d), 592 a) c), 594, 617, 615.

Решение уравнений третьей и четвертой степени. Формулы Кардано. Способ Феррари

Литература, необходимая для занятия: [5] № 167 a) d) e) I), 173 a) b).

Многочлены над полем действительных чисел, рациональных чисел

Нахождение рациональных корней многочленов. Приводимость и неприводимость многочленов над полем рациональных чисел

Литература, необходимая для занятия: [5] № 650 a) c) h) d) e), 653 a) b), 666 a) c). Дополнительные задачи:

- 1) а) Вычислить значение многочлена $x_1^3 \cdot x_2 + x_1 \cdot x_2^3 + x_1^3 \cdot x_3 + x_1 \cdot x_3^3 + x_2^3 \cdot x_3 + x_2 \cdot x_3^3$ от корней уравнения $x^3 x^2 4x + 1 = 0$.
- б) Составить многочлен, корнями которого являются квадраты корней многочлена $f(x) = x^3 + 2x 1$.
- 2) Найти рациональные корни многочлена f(x)
- a) $f(x) = 6x^4 + 19x^3 7x^2 26x + 12$
- 6) $f(x) = 6x^4 + x^3 + 2x^2 4x + 1$
- 3) Решить уравнение
- a) $x^4 + 2x^3 2x^2 + 6x 15 = 0$
- $6) x^3 + 9x^2 + 18x + 28 = 0$
- 4) а) Зная, что многочлен $f(x) = x^4 + 3x^3 + 2x^2 x + 5$ имеет корень $\alpha = -2 + i$, найти остальные его корни.
- б) Выяснить, приводим ли многочлен $f(x) = 3x^3 + 4x^2 + 4x + 4$ над полем рациональных чисел.

Алгебра высказываний. Равносильные и тождественно-истинные формулы алгебры высказываний.

- [7] Часть 2. Задачи из § 1.
- [9] Задачи из § 1, § 2.
- [8] Глава 1. Задачи из § 1, § 2.

Алгебра высказываний. Классы A, B, C, L, M булевых функций. Исследование булевых функций, их принадлежность классам.

- [7] Часть 2. Задачи из § 2.
- [9] Задачи из § 3, § 4, § 5.

Алгебра высказываний. Исследование систем булевых функций на полноту.

- [8] Глава 1. Задачи из § 3.
- [7] Часть 2. Задачи из § 2.
- [9] Задачи из § 6.

Исследовать системы на полноту:

1.
$$S = (C \cap L) \cup (A \setminus B) \cup (L \setminus C)$$

1.
$$f_1 \in A \cap B \cap L$$

2.
$$S = \{f_1, f_2\}$$
 2. $f_2 \in M \setminus C$

3.
$$f_1 \leftrightarrow f_2 \equiv 1$$

1.
$$f_1 \in M \cap L$$

3.
$$S = \{f_1, f_2\}$$
 2. $f_2 \notin C \cap L$

3.
$$f_1 \leftrightarrow \overline{f_2} \equiv 0$$

1.
$$f_1 \notin A \cap B \cap L$$

4.
$$S = \{f_1, f_2, f_3\}$$
2. $f_2 \in M \setminus L$
3. $f_1 \to f_2 \equiv 1$

4.
$$f_1 \vee f_3 \equiv 0$$

Исчисление высказываний. Выводимость формул в исчислении высказываний. Выводимость из гипотез.

- [7] Часть 2. Задачи из § 3.
- [8] Глава 1. Задачи из § 4.

Исчисление высказываний. Теорема дедукции. Логические задачи на проверку правильности вывода, на построение вопроса и на равносильные преобразования.

- [7] Часть 2. Задачи из § 3.
- [8] Глава 1. Задачи из § 1, § 2, § 3, § 4.

Логика предикатов. Равносильные формулы логики предикатов. Общезначимость и выполнимость формул.

- [9] Задачи из § 12.
- [7] Часть 2. Задачи из § 4, § 5.
- [8] Глава 2. Задачи из § 1, § 2.

Логика предикатов. Специализированные кванторы. Применение языка логики предикатов для записи математических предложений. Построение отрицаний

- [9] Задачи из § 12.
- [7] Часть 2. Задачи из § 4, § 5.
- [8] Глава 2. Задачи из § 1, § 2.

Алгебраические структуры

Литература, необходимая для занятия: [5] № 830, 832, 835, 836, 837, 838, 841, 844,848 Дополнительные задачи.

- **1.** Является ли операция $(a, b) \mapsto ab-ba$ бинарной алгебраической операцией на множествах **N**,
- **Z**, **Q**, 2**Z**, 2**Z**+ 1, **R**, **R**⁺, **Q**[$\sqrt{2}$]? Если является, то есть ли во множестве нейтральный элемент относительно нее?
- **2.** На множестве **R**задана бинарная алгебраическая операция* : a*b = a+b-2. Является ли операция * ассоциативной? Существует ли нейтральный и симметричный элемент? Является ли алгебра <**R**, *> группой?
- **3.** На множестве $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$ задано отношение a * b = |a b|. Определить является ли это отношение операцией, определить свойства.
- **4.** На множестве \mathbf{R}^+ задана операция $(a, b) \to a^b$. Найти свойства.
- **5.** Определить, какими алгебраическими структурами (группоид, полугруппа, моноид, группа) являются следующие алгебры: $\langle \mathbf{Z}, \cdot \rangle$; $\langle \mathbf{Z}, \rangle$; $\langle \mathbf{N}, + \rangle$; $\langle \mathbf{N}, \cdot \rangle$; $\langle \mathbf{N}, \rangle$; $\langle \mathbf{Q} \setminus \{0\}, \cdot \rangle$; $\langle \mathbf{Q}, + \rangle$; $\mathbf{R} \setminus \{0\}, \cdot \rangle$; $\langle \mathbf{C}, + \rangle$; $\langle \mathbf{Z}[\sqrt{3}], + \rangle$; $\langle \mathbf{N}[\sqrt{5}], + \rangle$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; $\langle \mathbf{L}, \circ \rangle$, где $L = \{f(x) = ax + b, a \neq 0, a, b \in \mathbf{R}\}$; \langle
- **6.** Дана группа <**R**, +>. Проверить, является ли подгруппой следующие множества:

$$M_{1} = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}; M_{2} = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}; M_{3} = \{a + b\sqrt{3} \mid a, b \in 2\mathbb{Z} + 1\}; M_{4} = \{a + b\sqrt{3} \mid a, b \in \mathbb{N}\}; M_{5} = \{a + b\sqrt{3} \mid a, b \in 4\mathbb{Z}\}; M_{6} = \{a + b\sqrt{\frac{3}{2}} \mid a, b \in 2\mathbb{Z}\}.$$

7. Пусть $M(2, R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a,b,c,d \in R \right\}$. Проверить, является ли подалгеброй алгебры

< M(2, R), > следующее множество матриц:

a)
$$\left\{ \begin{pmatrix} a & 2b \\ 2b & a \end{pmatrix} \middle| a, b \in R \right\}$$
; 6) $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad - bc = 1; a, b, c, d \in R \right\}$;
B) $\left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \middle| x \in Z \right\}$; Γ) $\left\{ \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \middle| x \in Z \right\}$.

8. Доказать, что множество степеней числа 2 с целыми показателями образует коммутативную группу относительно обычной операции умножения рациональных чисел.

16

- **9.** Доказать, что множество геометрических векторов на плоскости, лежащих на одной или параллельных прямых, образует коммутативную группу относительно операции сложения.
- **10.** Доказать, что множество невырожденных квадратных матриц порядка n образует группу относительно операции умножения матриц.
- **11.**На множестве **R** задана операция $(m, n) \rightarrow n + m + n \cdot m$. Найти свойства и определить, есть ли обратный и нейтральный элементы.
- **12.** Определить, какими алгебраическими структурами (группоид, полугруппа, моноид, группа) являются следующие алгебры:

$$< M, ^{\circ} >$$
, где $M = \{ f(x) = x + a, a \in \mathbb{Z} \};$

$$< N, \cdot >$$
, где $N = \{2^x \mid x \in \mathbb{Z}\};$

$$<\!\!A, *>$$
, где $A=\{(a,b)\mid a,b\in \mathbf{R}, a\neq 0\}, *: (a_1,b_1)*(a_2,b_2)=(a_1\cdot a_2,a_1b_2+b_1); <\!\!K, ^\circ\!\!>,$ где

K – множество вращений квадрата, ° – композиция;

 $< M_2(\mathbf{Z}), +>$, где $M_2(\mathbf{Z})$ — матрицы размерности 2×2 с целыми элементами;

13.Пусть
$$M(2, R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in R \right\}$$
. Проверить, является ли подалгеброй алгебры

$$<\!\!M\,(2,R),\!\!>$$
 следующее множество матриц: a) $\left\{\!\!\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\!\!\middle| a,b,c\in R\right\};$

6)
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc \neq 0; a, b, c, d \in R \right\};$$

- **14**. Укажите, в какой из классов вычетов $\overline{0}$, $\overline{1}$,..., $\overline{n-1}$ попадает каждое число: 307, -38, 25, -40, -10, 13, 85, -15, 43, если: а) n=10; б) n=2; в) n=5; г) n=7; д) n=6.
- **15**. Истинно ли высказывание: a) $13 \in 6 \pmod{7}$; б) $85 \in 3 \pmod{7}$?
- **16**. Построить таблицу Кэли \mathbb{Z}_4 кольца вычетов по модулю 4, указать его обратимые элементы и делители нуля, то есть элементы a, удовлетворяющие условию $a \cdot b = 0$, где b некоторый ненулевой элемент.
- 17. Определить, какими алгебраическими структурами являются следующие алгебры:
- <**Z**, +, >;<**Q**, +, >;<**R**, +, >;<**C**, +, >;< $M_2($ **Q**), +, >;< $M_2($ **R**), +, >;
- **18.** Выяснить, образует ли кольцо (относительно + и \cdot) множество nZ целых чисел, кратных данному натуральному числу n.
- **19.** Доказать, что множество квадратных матриц порядка n с действительными элементами образует некоммутативное кольцо относительно операции сложения и умножения матриц.
- **20.** Доказать, что алгебра $\mathbf{Z}_n = \langle \mathbf{Z}_n, +, \cdot \rangle$ коммутативное кольцо.
- 21. Какие из следующих множеств матриц образуют поле относительно сложения и умножения матриц:

a)
$$\left\{ \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \middle| x, y \in Q \right\};$$
 6) $\left\{ \begin{pmatrix} x & y \\ 2y & x \end{pmatrix} \middle| x, y \in Q \right\};$ 7) $\left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} \middle| x \in Q \right\}.$

- **22.** Доказать, что множество $Q[\sqrt{2}] = \{a+b\sqrt{2} \mid a,b \in R\}$ образует поле относительно обычных операций сложения и умножения действительных чисел. Найти в этом поле элемент, обратный к элементу $1-2\sqrt{2}$.
- 23. Является ли отображение гомоморфизмом и каким?
- a) $h : \langle \mathbf{R}, + \rangle \rightarrow \langle \mathbf{R}^+, \rangle, x \mapsto 3^x$;

$$6) h :< \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \middle| a, b \in \mathbf{R} \right\}, +> \rightarrow < \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \middle| x, y \in \mathbf{R} \right\}, +>, \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mapsto \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix};$$

B)
$$h : < \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in \mathbf{R} \right\}, > \to < \mathbf{R}, +>, \begin{pmatrix} a & b \\ b & a \end{pmatrix} \mapsto a + b;$$

$$\Gamma)\;h:<\mathbf{Q}\;,\cdot>\to\,<\left\{\begin{pmatrix} a&0\\0&0\end{pmatrix}\,\middle|\;a\;\in\mathbf{Q}\right\}\;,\cdot>\;,a\mapsto\begin{pmatrix} a&0\\0&0\end{pmatrix}\;.$$

24. Выяснить, является ли отображение гомоморфизмом указанных алгебр. Если да, то какой это вид гомоморфизма.

a)
$$f: \langle \mathbf{R}, + \rangle \to \langle \{2^x \mid x \in R\}, \cdot \rangle, f(x) = 2^x$$
.

6)
$$h: < \left\{ \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} \middle| a, b \in Z \right\}, +, > \rightarrow < \left\{ a + b\sqrt{3} \middle| a, b \in Z \right\}, +, >, h \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} = a + b\sqrt{3}.$$

$$\mathbf{B})\;h:<\left\{\!\!\left(\begin{matrix} a & 0 \\ 0 & b \end{matrix}\right)\!\!\middle|\; a,b\in Z\right\},\;+,\;>\to <\mathbf{Z},\;+,\;>,\;h\!\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}\!\!=a.$$

25. Определить, какими алгебраическими структурами являются следующие алгебры:

a)
$$\langle \mathbf{Z}[\sqrt{3}], +, \rangle; \langle \mathbf{Q}[\sqrt{5}], +, \rangle; \langle \mathbf{C}_1, +, \rangle, \text{ где } ; \mathbf{C}_1 = \{a + bi \mid a, b \in \mathbf{Z}\}$$

26. Показать, что пары (a, b) целых чисел с операциями +, \cdot образует кольцо.

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

 $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_1 \cdot b_2)$

- $(a_1,b_1)\cdot(a_2,b_2)=(a_1\cdot a_2,b_1\cdot b_2)$ 27. Доказать, что алгебра $\mathbf{Z}_7=<\!\!\mathbf{Z}_7,+,\cdot>$ является полем.
- **28.** Образует ли множество $\{\begin{pmatrix} x & y \\ v & x \end{pmatrix} \mid x, y \in \mathbb{R}\}$ матриц поле относительно сложения и умножения матриц.
- **29.** Образует ли кольцо числа виде $a + b\sqrt[3]{2}$ с рациональными a и b относительно обычных операций сложения и умножения чисел.

Фактор-группы. Фактор-кольца

- 1. Проверить, верно ли, что в кольце $\langle Z, +, \cdot \rangle$ подмножество $2Z = \{2k, k \in Z\}$ является и подкольцом, и идеалом.
- 2. Пусть $C = \langle \{a+bi, a, b \in R\}, +, \cdot \rangle$ кольцо комплексных чисел; $Z[i] = \{a+bi, a, b \in Z\}$ - множество целых гауссовых чисел. Подкольцом или идеалом в кольце комплексных чисел является множество Z[i]?
- 3. Будут ли нижеприведенные множества подкольцами или идеалами ниже указанных
- а) множество Z целых чисел в кольце Z[i]
- б) множество $Z[\sqrt{3}] = \{a + b\sqrt{3}, a, b \in Z\}$ в кольце действительных чисел
- в) множество $A_5 = \{a + b\sqrt{3}, a, b \in 5Z\}$ в кольце $Z[\sqrt{3}]$
- г) множество $A_3 = \{a + bi, a, b \in 3Z\}$ в кольце Z[i]
 - 4. Проверить, что множества $A_1 = \{\overline{0}, \overline{4}\}$ и $A_2 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ образуют идеалы в кольце Z_8 .
 - 5. Построить классы вычетов кольца Z по идеалу 2 Z.
 - 6. Построить классы вычетов кольца Z_8 по идеалу $I_1 = \{0, \overline{4}\}$.
 - 7. Построить классы вычетов кольца Z_6 по идеалу $I_3 = \{0, \bar{3}\}$.
 - 8. Построить фактор-кольцо:
- a) кольца Z по идеалу 2 Z
- δ) кольца Z по идеалу δ Z
 - 9. Построить фактор-кольцо кольца Z_8 по идеалу I_1 .
 - 10. Построить фактор-кольцо кольца Z_6 по идеалу I_3 .

Метод математической индукции

Литература, необходимая для занятия: [15]: с. 28– №1.7.1-1.7.15; [16]: с. 19– №4.6-4.10.

Основные комбинаторные конфигурации

Литература, необходимая для занятия:[11]: с. 32– №1-36.

- 1. Используя правило произведения, определить, сколько
- 1) трехзначных чисел можно составить из цифр 0, 1, 2, 3, 4 при условии, что цифры в числе не могут повторяться;
- 2) четных трехзначных чисел можно составить из цифр 0, 1, 2, 3, 4, если цифры в числе могут повторяться;
 - 3) трехзначных чисел можно составить из нечетных цифр, если цифры в числе
 - а) повторяются,
 - б) не повторяются.
- 2. В забеге участвовало 5 спортсменов. Сколькими способами можно предсказать распределение трех первых мест, если результаты у спортсменов всегда разные?
- 3. На бал пришли 30 юношей и 28 девушек. Сколькими способами можно составить пару для открытия бала?

Рекуррентные соотношения

Литература, необходимая для занятия: [13]: №1-5, 39-41, 44-46, 82-84, 88, 89, 90, 94-98, 100, 101-107. [20]: c.83-85 - №11, 13-15, 20-23, 28.

Теория графов

Литература, необходимая для занятия: [12]: с. 112 - №3.9.1-3.9.10; с. 128 - №3.14.1 (1,2); с. 132 - №3.14.2 (1,2); с. 151 - №3.19.1 (1,2), 3.19.2, 3.19.5; с. 172 - №3.23.3, 3.23.5, 3.23.6, 3.23.8, 3.23.10.

Литература, необходимая для занятия: [21] стр.86 № 1-34

Потоки в сетях

Литература, необходимая для занятия: [21] стр.96 № 35 [12]: с.198— №3.29.1 (1-4), 3.29.2 (1, 2).

6.3. Тематика и задания для лабораторных занятий

Лабораторные занятия отсутствуют.

6.4. Методические рекомендации для выполнения курсовых работ (проектов)

Тематика курсовых работ определяется преподавателем, являющимся руководителем работы. Темы курсовых работ по алгебре могут касаться разделов, не входящих в курс, а могут расширять и углублять знания студента по вопросам, изучавшимся на лекциях и практических занятиях.

Алгебра и теория чисел

- 1. Отображения и фактор-множества.
- 2. Отношения эквивалентности.
- 3. Отношения порядка.
- 4. Формула Бине-Коши.
- 6. Системы линейных неравенств.
- 7. Итерационные методы решения систем линейных уравнений.
- 8. Число действительных корней многочлена с действительными коэффициентами.
- 9. Основная теорема алгебры.
- 10. Основная теорема о симметрических многочленах.
- 11. Решение алгебраических уравнений в радикалах (история вопроса).
- 12. Конечные поля.
- 13. Элементы теории конечных полей.
- 14. Неприводимые многочлены над конечными полями.
- 15. Уравнение $x^3 = x$ в кольце классов вычетов Z_m
- 16. Алгебра кватернионов и ее приложения.
- 17. Замыкания и соответствия Галуа.
- 18. Функция Мёбиуса и её свойства.
- 19. Неприводимые кривые 2-го порядка.

- 20.Кольцо $Z[\omega]$ и его арифметика.
- 21. Кубический закон взаимности.
- 22. Магические квадраты.
- 23. Треугольник Паскаля: его свойства и приложения.
- 24. Числа Фибоначчи и их приложения.
- 25. Рекуррентные последовательности и числа Фибоначчи.
- 26. Реологические числа и их некоторые алгебраические свойства.
- 27. Греко-китайская теорема об остатках.
- 28. Линейные группы.
- 29. Группы перестановок.
- 30. Конечные абелевы группы.
- 31. Копредставления групп.
- 32. Силовские подгруппы.

Математическая логика

- 33. Логическая игра.
- 34. Неразрешимость логики первого порядка.
- 35. Нестандартные модели арифметики.
- 36. Метод диагонализации в математической логике.
- 37. Машины Тьюринга и невычислимые функции.
- 38. Вычислимость на абаке и рекурсивные функции.
- 39. Представимость рекурсивных функций и отрицательные результаты математической логики.
- 40. Разрешимость арифметики сложения.
- 41. Логика второго порядка и определимость в арифметике.
- 42. Метод ультрапроизведений в теории моделей.
- 43. Теорема Геделя о неполноте формальной арифметики.
- 44. Разрешимые и неразрешимые аксиоматические теории.
- 45. Интерполяционная лемма Крейга и ее приложения.

Дискретная математика

- 46. Эйлеровы графы.
- 47. Гамильтоновы графы.
- 48. Связность графа.
- 49. Циклы в графах.
- 50. Плоские графы.
- 51. Деревья.
- 52. Свойства эйлеровых графов.
- 53. Свойства гамильтоновых графов.
- 54. Раскраски графов.
- 55. Ориентированные графы.
- 56. Паросочетания.
- 57. Теория трансверсалей.
- 58. Потоки в сетях.
- 59. Производящие функции в теории графов.
- 60. Теорема Пойа и перечисление графов.
- 61. Графы на двумерных поверхностях.
- 62. Конечные группы и их графы.
- 63. Теорема Рамсея и ее приложения.
- 64. Полугруппы преобразований.
- 65. Полугруппы в биологии.
- 66. Копредставления полугрупп.
- 67. Логика на словах.
- 68. Алгебры отношений и полугруппы преобразований.
- 69. Рациональные языки.
- 70. Соответствие Эйленберга.
- 71. Отношения Грина.
- 72. Декомпозиция конечных моноидов.

- 73. Рациональные и алгебраические языки над полукольцами.
- 74. Элементы теории конечных автоматов.
- 75. Минимизация чистых автоматов.
- 76. Конструкции чистых автоматов.
- 77. Цифровое шифрование.
- 78. Последовательности над конечным полем
- 79. Линейные коды.
- 80. Решетки.
- 81. Модулярные и дистрибутивные решетки
- 82. Булевы алгебры.
- 83. Минимальные формы булевых многочленов.
- 84. Приложения булевых алгебр к переключательным схемам.
- 85. Построение вещественных чисел по Дедекинду.
- 86. Построение вещественных чисел по Коши.
- 87. Разрешимость элементарной теории вещественных чисел.
- 88. Роль аксиомы выбора в теории множеств.
- 89. Алгоритмы поиска.

При оформлении текстовых документов следует руководствоваться документом: «Правила оформления текстовых документов: руководящий документ по оформлению рефератов, отчетов о лабораторных работах, практиках, пояснительных записок к курсовым проектам и выпускным квалификационным работам / А. В. Басова, С. В. Боженко, Т. Н. Вахнина, И. Б. Горланова, И. А. Делекторская, А. А. Титунин, О. В. Тройченко, С. А. Угрюмов, С. Г. Шарабарина; под общ. ред. О. В. Тройченко. — 2-е изд., перераб. и доп. — Кострома: Изд-во Костром. гос. ун-та, 2017. — 47 с.»

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины

№	Литература	Кол-во книг
	а) Основная литература	
1	Кострикин, А.И. Введение в алгебру: учебник / А.И. Кострикин Москва: МЦНМО, 2009 Ч. 1. Основы алгебры 273 с ISBN 978-5-94057-453-8; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=63140	2 ЭР
2	Кострикин, А.И. Введение в алгебру: учебник / А.И. Кострикин Москва: МЦНМО, 2009 Ч. 2. Линейная алгебра 368 с ISBN 978-5-94057-454-5; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=63144	ЭР
3	Кострикин, А.И. Введение в алгебру: учебник / А.И. Кострикин Москва: МЦНМО, 2009 Ч. 3. Основные структуры алгебры 272 с ISBN 978-5-94057-455-2; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=62951	ЭР
4	Судоплатов, С.В. Математическая логика и теория алгоритмов: учебник для вузов / С. В. Судоплатов, Е. В. Овчинникова Москва; Новосибирск: НГТУ, 2008 224 с МО РФ напр. 654600 - Информатика и вычислительная техника, 654700-Информационные системы, 540200-Физико-математическое образование ЕН ISBN 978-5-16-001975-8; 978-5-7782-0458-4: 248.00; 140.03.	50
5	Судоплатов, С.В.Дискретная математика: учебник для вузов. – 2-е изд., перераб. – Москва; Новосибирск: Инфра-М – НГТУ, 2007. – 256 с. – (Высш. образование). – МО РФ. – ЕН. – ISBN 5-16-002299-6. –ISBN 5-	84 ЭБ

	7782-0466-3: 104.00.	
	http://biblioclub.ru/index.php?page=book_red&id=135675&sr=1	
	6) Howe way was averagely no	
	б) Дополнительная литература Матыцина, Татьяна Николаевна. Линейная алгебра [Электронный ресурс] :	
	учебметод. пособие / Т. Н. Матыцина, Е. К. Коржевина ; М-во	
1	образования и науки Российской Федерации, Костромской гос. ун-т им. Н.	ЭБ
	А. Некрасова Электрон. текст. дан Кострома : КГУ, 2014 151 с Загл.	
	с экрана ISBN 978-5-7591-1432-1 : Б. ц.	
	Проскуряков, И.В. Сборник задач по линейной алгебре / И.В. Проскуряков.	0
2	- Изд. 3-е Москва : Наука, 1966 381 с. : ил. ; То же [Электронный	8
	pecypc] URL: http://biblioclub.ru/index.php?page=book&id=464077	ЭБ
	(22.02.2018).	
	Фаддеев, Д.К. Задачи по высшей алгебре [Электронный ресурс] : учеб. / Д.К. Фаддеев, И.С. Соминский. — Электрон. дан. — Санкт-Петербург :	1
3	Лань, 2008. — 288 с. — Режим доступа: https://e.lanbook.com/book/399 —	ЭБ
	Загл. с экрана.	ЭВ
	Куликов Л. Я. Алгебра и теория чисел: учеб. пособие для студентов пед.	
	ин-тов по спец. "Математика", "Математика и физика", "Физика и	
4	математика" : допущено М-вом просвещения СССР / Л. Я. Куликов. – М.:	20
	Высшая школа, 1979. – 559 с.: ил. – Библиогр.: с. 544. –Предм. указ.: с. 545-	
	551. – 1.10.	
_	Сборник задач по математической логике и теории алгоритмов: учеб.	
5	пособие/ В.И. Игошин. — М.: КУРС: ИНФРА-М, 2018. — 392 с. —	ЭБ
	(Бакалавриат). http://znanium.com/catalog.php?bookinfo=524332	
	Шапорев, Сергей Дмитриевич. Математическая логика: курс лекций и	
6	практических занятий: [учеб. пособие для студ. вузов]: допущено науч метод. советом / Шапорев, Сергей Дмитриевич СПб.: БХВ-Петербург,	30
U	2007 416 с Библиогр.: с. 405 Предм. указ.: с. 406-410 ISBN 978-5-	30
	94157-702-6: 157.00.	
	Чередникова, А. В.Дискретная математика: теория и практика: учеб.	66
	пособие для вузов / А.В. Чередникова, О.Б. Садовская, Л.А. Каминская. –	
7	Кострома: КГТУ, 2012; 2011. – 75 с.: рис. – обязат. – ISBN 978-5-8285-	
,	0585-2: 6.93.	
	Электронная библиотека КГУ	ЭБ
	Дискретная математика: теория и практика 227484	a ^
•	Шапорев, С.Д. Дискретная математика: курс лекций и практических	30
8	занятий: учеб. пособие для студ. вузов: допущено. – СПб.: БХВ-Петербург,	
	2007. – 400 с. – Предм. указ.: с. 393-396. – ISBN 978-5-94157-703-3: 227.00.	22
	Матыцина, Т.Н.Дискретная математика. Решение рекуррентных соотношений: практикум / М-во образования и науки Российской	22
9	Федерации, Костромской гос. ун-т им. Н. А. Некрасова. – Кострома: КГУ,	
,	2010. – 33, [2] с. – Библиогр.: с. 34. – 2.70.	
	2010. – 33, [2] С. – Виолиогр.: С. 34. – 2.70. Maticina_diskretn_matem	ЭБ
	Чередникова, А.В.Введение в теорию графов: учебметод. пособие / А.В.	23
4.0	Чередникова, И.В. Землякова. – Кострома: КГТУ, 2012. – 28 с. – ЕН. –	
10	обязат. – б.ц.	ЭБ
	Электронная библиотека КГУВведение в теорию графов 227510	
	Матыцина, Т.Н. Дискретная математика. Основы теории графов учебно	20
11	методическое пособие [Текст] / Т. Н. Матыцина - Кострома : КГУ, 2013	
	111 c.	

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Электронные библиотечные системы:

- 1. ЭБС Университетская библиотека онлайн http://biblioclub.ru
- 2. ЭБС «Лань» https://e.lanbook.com
- 3. 3EC «ZNANIUM.COM» http://znanium.com
- 4. Библиотека КГУ http://library.ksu.edu.ru/

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия проводятся в аудиториях с требуемым числом посадочных мест, оборудованные мультимедиа. Необходимое программное обеспечение – офисный пакет.

Практические занятия проводятся в аудиториях с требуемым числом посадочных мест, в аудитории должна быть доска, мел или маркеры.