МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ФАКУЛЬТАТИВНОЙ ДИСЦИПЛИНЫ

ТОПОЛОГИЧЕСКАЯ ОПТИМИЗАЦИЯ ДЕТАЛЕЙ МАШИН

Направление подготовки 15.03.02 «Технологические машины и оборудование» Направленность «Цифровое проектирование машин и холодильных систем» Квалификация выпускника: бакалавр Рабочая программа дисциплины разработана в соответствии с Федеральным государственным образовательным стандартом по направлению подготовки 15.03.02 Технологические машины и оборудование (уровень бакалавриата), утвержденным приказом Министерства науки и высшего образования Российской Федерации от 9 августа 2021 г. № 728 (зарегистрирован Министерством юстиции Российской Федерации 7 сентября 2021 г., регистрационный № 64910), в соответствии с учебным планом направления подготовки 15.03.02 Технологические машины и оборудование (уровень бакалавриата).

Разработал: Корабельников А.Р., зав. каф. ТММ, ДМ и ПТМ, д.т.н., профессор

Рецензент: Сокова Г.Г., начальник УМУ, д.т.н., доцент

УТВЕРЖДЕНО:

На заседании учебно-методического совета (УМС) Председатель УМС Тимонина Л.И., проректор по УМР, к.п.н., доцент

ПЕРЕУТВЕРЖДЕНО:

На заседании кафедры ТММ, ДМ и ПТМ Протокол заседания кафедры №3 от 11.11.2021 г. Заведующий кафедрой ТММ, ДМ и ПТМ Корабельников Андрей Ростиславович, д.т.н., профессор

ПЕРЕУТВЕРЖДЕНО:

На заседании кафедры ТММ, ДМ и ПТМ Протокол заседания кафедры № 5 от 31.01.2023 г. Заведующий кафедрой ТММ, ДМ и ПТМ Корабельников Андрей Ростиславович, д.т.н., профессор

1. Цель и задачи освоения дисциплины

Цель дисциплины: Углубление знаний студентов в области современных методов цифрового проектирования продукции машиностроения.

Задачи дисциплины:

Развитие навыков работы с программными пакетами, основанными на методе топологической оптимизации.

Совершенствование качества проектирования силовых конструкций и сокращение его сроков на основе метода топологической оптимизации.

Решение практических задач оптимизации при проектировании продукции машиностроения для обеспечения заданных характеристик качества изделия при минимальных затратах.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен:

Знать: современные подходы к проектированию, предполагающие эффективное использование материалов в конструкции при сохранении прочности и заданных эксплуатационных показателей изделия; методы и средства топологической оптимизации.

Уметь: синтезировать оптимальные конструкции с учетом заданных параметров, условий функционирования, а также конструкторских и технологических ограничений.

Владеть: методами автоматизированного проектирования, позволяющими получить оптимальную форму и внутреннюю структуру изделия в заданных условиях эксплуатации.

Освоить компетенции: КС-26. Способность к созданию оптимальных конструкций деталей и узлов машин.

Научно-образовательное, профессионально-трудовое воспитание обучающихся посредством содержания дисциплины и актуальных воспитательных технологий.

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к факультативным дисциплинам учебного плана. Изучается согласно учебному плану.

4. Объем дисциплины (модуля)

4.1. Объем дисциплины в зачетных единицах с указанием академических (астрономических) часов и виды учебной работы

Виды учебной работы	Все формы обучения
Общая трудоемкость в зачетных единицах	2
Общая трудоемкость в часах	72
Аудиторные занятия в часах, в том числе:	10
Лекции	6
Практические занятия	4
Лабораторные занятия	
Самостоятельная работа в часах	61,75
ИКР	0,25
Форма промежуточной аттестации	зачет

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма
Лекции	6
Практические занятия	4
Лабораторные занятия	
Консультации	0,25
Зачет/зачеты	0,25
Экзамен/экзамены	
Курсовые работы	
Курсовые проекты	
Bcero	10,5

5. Содержание дисциплины (модуля), структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

№	Название раздела, темы	Всего, Аудиторные занятия		Самостоятельная		
		акад. час	Лекц.	Практ.	Лаб.	работа
1	Процесс моделирования продукта в САЕ системе	11	1			10
2	Основы взаимодействия с SolidThinking Inspire	11	1			10
3	Построение, редактирование и анализ геометрии продукта	13	1		2	10
4	Концептуальное проектирование в SolidThinking Inspire	13	1		2	10
5	Анализ движения механизма в Inspire Motion	12	2			10
	Подготовка к зачету	11,75				11,75
	ИКР	0,25				
	Итого:	72	6		4	61,75

5.2. Содержание:

- 1. **Процесс моделирования продукта в САЕ системе.** Индустриальное применение. Метод конечных элементов. Процедура анализа конечных элементов.
- 2. **Основы взаимодействия с SolidThinking Inspire**. Графический интерфейс пользователя. Управление. Импорт файлов. Просмотр элементов управления. Выбор и редактирование. Организация модели. Измерения. Свойства внешнего вида.
- 3. Построение, редактирование и анализ геометрии продукта. Создание эскиза изделия. Ограничения эскиза. Упрощение геометрии. Выполнение процедуры анализа геометрии изделия на основе МКЭ.

- 4. **Концептуальное проектирование в SolidThinking Inspire.** Топологическая оптимизация. Оптимизация топографии. Концептуальное проектирование конструкции (оптимизационные процессы).
- 5. **Анализ движения механизма в Inspire Motion**. Основные этапы анализа движения. Отладка Inspire Motion. Интеграция Inspire Motion и MotionView.

6. Методические материалы для обучающихся по освоению дисциплины

6.1. Самостоятельная работа обучающихся по дисциплине (модулю)

<u>№</u> п/ п	Раздел (тема) дисциплины	Задание	Час ы	Методические рекомендации по выполнению задания	Форма контроля
1	Процесс моделирования продукта в САЕ системе	Подготовка к лабораторны м работам	10	СР выполняется с использованием основной и дополнительной литературы, ЭБС	Текущий опрос, защита лабораторных работ
2	Основы взаимодействия с SolidThinking Inspire	Подготовка к лабораторны м работам	10	СР выполняется с использованием основной и дополнительной литературы, ЭБС	Текущий опрос, защита лабораторных работ
3	Построение, редактирование и анализ геометрии продукта	Подготовка к лабораторны м работам	10	СР выполняется с использованием основной и дополнительной литературы, ЭБС	Текущий опрос, защита лабораторных работ
4	Концептуальное проектирование в SolidThinking Inspire	Подготовка к лабораторны м работам	10	СР выполняется с использованием основной и дополнительной литературы, ЭБС	Текущий опрос, защита лабораторных работ
5	Анализ движения механизма в Inspire Motion	Подготовка к лабораторны м работам	10	СР выполняется с использованием основной и дополнительной литературы, ЭБС	Текущий опрос, защита лабораторных работ
	Подготовка к зачету		11,75	СР выполняется с использованием основной и дополнительной литературы, ЭБС	Зачет

Самостоятельная работа студента складывается из изучения рекомендуемой литературы, подготовке к лабораторным работам по вопросам и заданиям, выданным преподавателям в конце занятий.

Отчеты по лабораторным работам должны быть оформлены с применением современных компьютерных технологий и программного обеспечения. Защита лабораторной работы проводится по результатам проверки отчета, самостоятельности,

выполненного задания. Допуск студента к следующей работе возможен при получении положительной оценки при опросе на занятии и подготовке к лабораторной работе.

По итогам освоения дисциплины проводится зачет, целью которого является проверка освоенности дисциплины и сформированности компетенций. Зачет преподавателем проводится для студентов, успешно освоивших дисциплину и защитивших все лабораторные работы.

6.2. Тематика и задания для лабораторных занятий

- 1. Процесс моделирования продукта в САЕ системе.
- 2. Основы взаимодействия с SolidThinking Inspire.
- 3. Построение, редактирование и анализ геометрии продукта.
- 4. Концептуальное проектирование в SolidThinking Inspire.
- 5. Анализ движения механизма в Inspire Motion.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

- а) основная литература:
- 1. Норенков И.П. Основы автоматизированного проектирования: учебник для вузов. Москва: МГТУ им. Н. Э. Баумана, 2009.
- 2. Кондаков А.И. САПР технологических процессов: учебник для вузов. Москва: Академия, 2007.
- 3. Гоберман В.А., Гоберман Л. А. Основы автоматизированного проектирования механизмов и машин: учеб. пособие. Москва: МГУЛ, 2002.
 - 4. Ли К. Основы САПР (САD/САМ/САЕ). СПб.: Питер, 2004.
- 5. Черепашков А.А., Носов Н.В. Компьютерные технологии, моделирование и автоматизированные системы в машиностроении: Учеб. для студ. вузов. Волгоград: Издательский Дом «Ин-Фолио», 2009
 - б) дополнительная литература:
- 1. Романов Е.В. Методология технологического проектирования [Электронный ресурс]: Часть І/Романов Е.В. М.: НИЦ ИНФРА-М, 2015. 186 с.: 60х90 1/16 ISBN 978-5-16-104300-4 (online) http://znanium.com/catalog.php?bookinfo=544258.
- 2. Романов Е.В. Методология технологического проектирования [Электронный ресурс]: Часть II/Романов Е.В., 2-е изд., стереотипное М.: НИЦ ИНФРА-М, 2016. 175 с.: 60х90 1/16 ISBN 978-5-16-104302-8 (online) http://znanium.com/catalog.php? bookinfo=544260.
- 3. Компьютерное моделирование [Электронный ресурс]: учебник / В.М. Градов, Г.В. Овечкин, П.В. Овечкин, И.В. Рудаков М.: КУРС: ИНФРА-М, 2018. 264 с.- http://znanium.com/catalog.php?bookinfo=911733.
- 4. Берлинер, Э.М. САПР конструктора машиностроителя / Э.М.Берлинер, О.В.Таратынов Москва: Форум, НИЦ ИНФРА-М, 2015. 288 с. (Высшее образование) ISBN 978-5-00091-042-9. Текст : электронный. URL: https://znanium.com/catalog/product/501432

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

- 1. Федеральный портал «Российское образование».
- 2. Официальный сайт министерства образования и науки Российской Федерации.
- 3. https://solidthinking.com/support-training/inspire/

- 4. http://fea.ru/article/posobia
- 5. http://www.hyperworks.compmechlab.ru/article/solidthinking-description

Электронные библиотечные системы:

- 1. ЭБС «Лань».
- 6. ЭБС «Университетская библиотека online».
- 7. ЭБС «Znanium».

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Материально-техническое обеспечение:

Б-108, лабораторный класс, 50 кв. м., ПК (в комплекте) с подключением к сети Internet: монитор 23,6" Wide Acer V243H, с/блок Proxima MC 852 (15 шт.), посадочные места.

Б-302, лабораторный класс, ПК (в комплекте) с подключением к сети Internet: монитор 23,6" Wide Acer V243H, с/блок Proxima MC 852 (10 шт.), посадочные места.

Необходимое программное обеспечение:

SolidThinking Inspire; Microsoft Internet Explorer; Microsoft Office.