МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

Утверждено ученым советом КГУ Протокол №4 от 23.10.2021

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ КОМПЬЮТЕРНОЕ ЗРЕНИЕ И НЕЙРОННЫЕ СЕТИ

Направление подготовки: 44.04.01 ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ Направленность: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, ЦИФРОВАЯ СРЕДА ОБРАЗОВАТЕЛЬНОЙ ОРГАНИЗАЦИИ

Квалификация выпускника: МАГИСТР

Общие сведения о программе

Рабочая программа дисциплины (модуля) составлена на основе требований ФГОС ВО по направлениям подготовки (специальностям):

Код и наименование направления подготовки (специальности)	Дата и номер приказа Минобрнауки России
44.04.01 Педагогическое образование профиль: Искусственный интеллект, цифровая среда образовательной организации	«22» февраля 2018г. № 126

Сведения о разработчике(ах) программы:

Венедиктов Максим Ильич, генеральный директор ООО «Малленом Технолоджис»

(ФИО, ученая степень, ученое звание, должность, место работы)

Лягинова Ольга Юрьевна, заведующий кафедрой математики и информатики, канд.пед.наук, доцент

(ФИО, ученая степень, ученое звание, должность, место работы)

Кашинцева Ольга Альбертовна, доцент кафедры математики и информатики, канд.техн.наук, доцент

(ФИО, ученая степень, ученое звание, должность, место работы)

Рабочая программа дисциплины (модуля) рассмотрена на заседании кафедры и рекомендована к утверждению

МАТЕМАТИКИ И ИНФОРМАТИКИ

наименование кафедры

От 11.10.2021, протокол №3.

Заведующий кафедрой

 11.10.2021
 О.Ю. Лягинова

 дата подписания
 подпись
 И.О. Фамилия

Рабочая программа дисциплины (модуля) рассмотрена на заседании кафедры и рекомендована к утверждению

КАФЕДРА ПЕДАГОГИКИ И АКМЕОЛОГИИ ЛИЧНОСТИ

подпись

И.О. Фамилия

дата подписания

Содержание

1	Место дисциплины (модуля) в структуре образовательной программы	4
2	Планируемые результаты обучения по дисциплине (модулю)	4
3	Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	6
4	Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов	7
5	Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине (модулю)	11
6	Учебно-методическое и информационное обеспечение дисциплины (модуля)	28
7	Материально-техническое обеспечение дисциплины (модуля)	29
8	Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья	31

1 Место дисциплины (модуля) в структуре образовательной программы

Согласно учебному плану дисциплина «Компьютерное зрение и нейронные сети» входит в модуль «Искусственный интеллект» и изучается во 2 и 3 семестрах при очной форме обучения; в 3 и 4 семестрах при заочной форме обучения. Необходимой базой для изучения дисциплины являются знания, полученные при изучении дисциплин методологического модуля, а также дисциплин «Методы искусственного интеллекта» и «Обработка данных с использованием языка программирования» модуля «Искусственный интеллект».

В ходе изучения дисциплины магистрант получает основные знания о компьютерном зрении, методах обработки и анализа изображений, нейронных сетях и подходах к их обучению.

Полученные знания, умения и навыки востребованы при освоении последующих дисциплин данного модуля, в ходе производственной практики и при подготовке выпускной квалификационной работы.

2 Планируемые результаты обучения по дисциплине (модулю)

Дисциплина направлена на формирование следующих компетенций выпускника:

Компетенции, формируемые в результате освоения дисциплины (модуля)	Индикаторы достижения компетенций
ОПК-10. Способен исследовать современные проблемы и методы информатики, искусственного интеллекта и развития информационного общества, цифровой экономики.	ИОПК 10.1 Исследует современные проблемы информатики, искусственного интеллекта и развития информационного общества, цифровой экономики. ИОПК 10.2 Проводит анализ современных методов и средств информатики и искусственного интеллекта для решения задач профессиональной деятельности.
ПК-11. Способен руководить проектами со стороны образовательной организации по созданию, поддержке и использованию системы искусственного интеллекта на основе нейросетевых моделей и методов.	ИПК11.1 Руководит работами по оценке и выбору моделей искусственных нейронных сетей и инструментальных средств для решения поставленных задач со стороны образовательной организации. ИПК11.2 Руководит созданием систем искусственного интеллекта на основе моделей искусственных нейронных сетей и инструментальных средств со стороны образовательной организации. ИПК11.3 Руководит проектами по разработке, систем искусственного интеллекта на основе моделей глубоких нейронных сетей и нечетких моделей и методов со стороны образовательной организации.
ПК-13. Способен руководить проектами со стороны образовательной организации по созданию, внедрению и использованию одной или нескольких сквозных цифровых технологий искусственного интеллекта в прикладных	ИПК13.1 Решает прикладные задачи и реализует проекты в области сквозной цифровой технологии «Компьютерное зрение» со стороны образовательной организации.

областях.	

3 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

очная

					форма обуче	ения							
Наименование дисциплины (модуля)	Семест	Кол-во зачетны	Кол-во часов,	Самостоятельна я работа, час.	Аудиторная работа				КР	КП	Кр	Д	Форма промежуточной
с указанием разделов (элементов)	P	х единиц,	всего	и расста, пас.	Всего из них:						аттестации		
(элементов)		всего				Л	ЛР	ПЗ					(Экзамен / Зачет)
Компьютерное зрение и нейронные сети	2, 3	7	252	196	56	28	28						Экзамен - 3 семестр

заочная

					форма обуче	ния							
Наименование дисциплины (модуля)	Семест	Кол-во зачетны	Кол-во часов,	Самостоятельна я работа, час.	Аудиторная работа				КР	КП	Кр	Д	Форма промежуточной
с указанием разделов (элементов)	P	х единиц,	всего	и расста, тас.	Всего	Всего из них:							аттестации
(SIGNETION)		всего				Л	ЛР	ПЗ					(Экзамен / Зачет)
Компьютерное зрение и нейронные сети	3, 4	7	252	224	28	12	16						Экзамен - 4 семестр

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов

Очная форма обучения

Наименование	Название темы с кратким содержанием		Видь	і занят	ий, часы	Самостоятель	Всего
дисциплины (модуля) с указанием разделов (элементов) /наименование раздела дисциплины		Л	ЛР	ПЗ	В том числе с применением ЭО	ная работа, часы	часов
1. Основы компьютерного зрения	Компьютерное зрение и проблема многообразия неструктурированных данных. Задачи компьютерного зрения. Проблемы и их решения. Признаки на изображениях, свертка. Основы обработки изображений. Детектор углов Харриса. Преобразования изображений: гомографии, деформирование изображений, создание панорам. Кластеризация изображений: кластеризация методом К-средних, иерархическая кластеризация, спектральная кластеризация. Поиск изображений. Классификация изображений по содержанию. Сегментация изображений. ОрепСV.	12	12	-	12	56	80
2. Обработка и подготовка данных	Инструменты для разметки и аугментации данных. Методы оценки точности обучения. Типы и форматы наборов данных, популярные открытые инструменты для разметки, сервис kaggle. Подходы к увеличению наборов данных. СVAT для подготовки своего набора данных для обучения. Сколько должно быть данных для получения высокой точности при обучении. IoU, mAP и другие метрики оценки точности обучения	8	4	-	8	54	66

	нейронных сетей.						
3. Нейронные сети	Обучение нейронных сетей и их основные архитектуры. Персептрон. Теорема Байеса, функции ошибки и регуляризации. Градиентный спуск и функции активации. Как обучаются нейронные сети. Основные архитектуры. Сверточные и рекуррентные нейронные сети. Адаптивные варианты нейронных сетей. Основные слои сверточных нейронных сетей: сверочный, понижения размерности и полносвязный слои. Ядро свертки. Основные архитектуры. Применение сверточных нейронных сетей. Автокодировщики. Обработка последовательностей. Нейронные сети с памятью. Распространение ошибки и архитектура RNN. LSTM сети. Применение сверточных нейронных сетей. Нечеткие модели и методы. Новые архитектуры и применения. Интеллектуальная обработка текстов. Рекурсивные нейронные сети и синтаксический разбор. Нейронные сети трансформеры. Современные архитектуры и будущее нейронных сетей. Порождающие модели и состязательные сети. Глубокое обучение с подкреплением и нейробайесовские методы.	8	12	-	16	86	106
	Итого	28	28	_	36	196	252

Заочная форма обучения

Наименование	Название темы с кратким содержанием		Видь	і заняті	ий, часы	Самостоятель	Всего
дисциплины (модуля) с указанием разделов (элементов) /наименование раздела дисциплины		Л	ЛР	ПЗ	В том числе с применением ЭО	ная работа, часы	часов
1. Основы компьютерного зрения	Компьютерное зрение и проблема многообразия неструктурированных данных. Задачи компьютерного зрения. Проблемы и их решения. Признаки на изображениях, свертка. Основы обработки изображений. Детектор углов Харриса. Преобразования изображений: гомографии, деформирование изображений, создание панорам. Кластеризация изображений: кластеризация методом К-средних, иерархическая кластеризация, спектральная кластеризация. Поиск изображений. Классификация изображений по содержанию. Сегментация изображений. ОрепСV.	6	6	-	6	64	82
2. Обработка и подготовка данных	Инструменты для разметки и аугментации данных. Методы оценки точности обучения. Типы и форматы наборов данных, популярные открытые инструменты для разметки, сервис kaggle. Подходы к увеличению наборов данных. СVAТ для подготовки своего набора данных для обучения. Сколько должно быть данных для получения высокой точности при обучении. IoU, mAP и другие метрики оценки точности обучения нейронных сетей.	2	2	-	2	62	68
3. Нейронные сети	Обучение нейронных сетей и их основные архитектуры. Персептрон. Теорема Байеса,	4	8	-	4	98	114

функции ошибки и регуляризации. Градиентный спуск и функции активации. Как обучаются нейронные сети. Основные архитектуры. Сверточные и рекуррентные нейронные сети. Адаптивные варианты нейронных сетей. Основные слои сверточных нейронных сетей: сверочный, понижения размерности и полносвязный слои. Ядро свертки. Основные архитектуры. Применение сверточных нейронных сетей. Автокодировщики. Обработка последовательностей. Нейронные сети с памятью. Распространение ошибки и архитектура RNN. LSTM сети. Применение сверточных нейронных сетей. Нечеткие модели и методы. Новые архитектуры и применения. Интеллектуальная обработка текстов. Рекурсивные нейронные сети и синтаксический разбор. Нейронные сети трансформеры. Современные архитектуры и будущее нейронных сетей. Порождающие модели и состязательные сети. Глубокое обучение с подкреплением и нейробайесовские методы.						
Итого	12	16	-	12	224	252

5 Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине (модулю)

5.1 Перечень оценочных средств

Компетенции	Индикаторы достижения компетенций	Оценочные средства
ОПК-10. Способен исследовать современные проблемы и методы информатики, искусственного интеллекта и развития информационного общества, цифровой экономики.	ИОПК 10.1 Исследует современные проблемы информатики, искусственного интеллекта и развития информационного общества, цифровой экономики. ИОПК 10.2 Проводит анализ современных методов и средств информатики и искусственного интеллекта для решения задач профессиональной деятельности.	1. Задания для выполнения лабораторных работ. 2. Задания для самостоятельной работы. 3. Вопросы к экзамену.
ПК-11. Способен руководить проектами со стороны образовательной организации по созданию, поддержке и использованию системы искусственного интеллекта на основе нейросетевых моделей и методов.	ИПК11.1. Руководит работами по оценке и выбору моделей искусственных нейронных сетей и инструментальных средств для решения поставленных задач со стороны образовательной организации. ИПК11.2. Руководит созданием систем искусственного интеллекта на основе моделей искусственных нейронных сетей и инструментальных средств со стороны образовательной организации. ИПК11.3. Руководит проектами по разработке, систем искусственного интеллекта на основе моделей глубоких нейронных сетей и нечетких моделей и методов со стороны образовательной организации.	1. Задания для выполнения лабораторных работ. 2. Задания для самостоятельной работы. 3. Вопросы к экзамену.
ПК-13. Способен руководить проектами со стороны образовательной организации по созданию,	ИПК13.1. Решает прикладные задачи и реализует проекты в области сквозной цифровой технологии «Компьютерное	1. Задания для выполнения лабораторных работ. 2. Задания для самостоятельной работы.

внедрению и использованию одной или нескольких сквозных цифровых технологий искусственного интеллекта	зрение» со стороны образовательной организации.	3. Вопросы к экзамену.
искусственного интеллекта в прикладных областях.		
в прикладивіх областих.		

5.2 Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Образцы заданий для самостоятельной работы:

По итогам самостоятельной работы студент готовит отчет, включающий в себя ответы на вопросы и решение заданий, предлагавшихся к выполнению в ходе самостоятельной работы. Отчет сдается преподавателю в электронной форме.

Задания для самостоятельной работы по разделу дисциплины «Основы компьютерного зрения»:

Изучите теорию и представьте краткий конспект по теме:

- 1. Библиотека PIL. Создание миниатюр.
- 2. Библиотека PIL. Копирование и вставка областей.
- 3. Библиотека PIL. Изменение размера и поворот.
- 4. Библиотека Matplotlib. Рисование точек и прямых линий.
- 5. Библиотека Matplotlib. Интерактивное аннотирование.
- 6. Пакет NumPy.
- 7. Размытие изображений.
- 8. Локальные дескрипторы изображений.
- 9. Преобразования изображений.
- 10. Многовидовая геометрия.
- 11. Основные подходы к классификации изображений.
- 12. Вариационные методы сегментации изображений.
- 13. Основы ОрепСУ.

Задания для самостоятельной работы по разделу дисциплины «Обработка и подготовка данных»:

- 1. Разметка данных в инструменте CVAT.
- 2. Разработка программного обеспечения для экспорта данных из CVAT.
- 3. Подготовка отчета с описанием основных метрик оценки точности нейронных сетей для обработки изображений.

Задания для самостоятельной работы по разделу дисциплины «Нейронные сети»:

- I. Изучите теорию и представьте краткий конспект по теме:
 - 1. Введение в нейронные сети. Простая прогнозирующая машина. Простой классификатор.
 - 2. Нейроны. Распространение сигналов по нейронной сети.
 - 3. Использование матричного умножения в нейронной сети с тремя слоями.
 - 4. Подготовка данных: входные значения; выходные значения; случайные начальные значения весовых коэффициентов.
 - 5. Корректировка весовых коэффициентов в процессе обучения нейронной сети.

- 6. Обратное распространение ошибок.
- 7. Описание обратного распространения ошибок с помощью матричной алгебры.
- 8. Использование градиентного спуска для обновления весовых коэффициентов.
- 9. Подготовка данных: входные значения; выходные значения; случайные начальные значения весовых коэффициентов.
 - 10. Недостатки нейронных сетей.
 - 11. Сверточные нейронные сети.
 - 12. Рекуррентные нейронные сети.
 - 13. Состязательные нейронные сети.
- II. Изучите курс ML START «Машинное обучение»:

https://youtube.com/playlist?list=PLrSH_ggigfrlXzHj8aLKj1cjPfwORqIxy

Образцы заданий для выполнения на лабораторных работах во 2 семестре:

- 1. Работа с основными пакетами Python для обработки изображений: PIL, Matplotlib, NumPy, SciPy.
- 2. Нахождение соответственных точек в изображениях используя детектор углов Харриса.
- 3. Преобразование изображений: гомографии, деформирование, создание панорам.
- 4. Кластеризация изображений и классификация изображений.
- 5. Сегментация изображений.
- 6. Основные функции OpenCV.

Образцы тем лабораторных работ в 3 семестре:

- 1. Подготовка набора данных инструментом CVAT.
- 2. Нейронные сети.
- 3. Сверточные нейронные сети.
- 4. Рекуррентные нейронные сети.

Лабораторная работа «Подготовка набора данных инструментом CVAT»

- 1. Разбить видео на кадры (можно использовать ffpmeg, следует выставлять fps = 30).
- 2. Пройдите регистрацию в инструменте CVAT.

После регистрации и авторизации появится титульный экран «Tasks», где отображены все текущие задачи по разметке. Изначально список пуст, поэтому необходимо создать задачу с нужным файлом для разметки:

- 3. Нажмите кнопку "+ Create new task".
- 4. Далее необходимо сделать следующее:
 - а. Ввести наименование задачи.
 - b. Добавить объект, который необходимо разметить.
 - с. В поле "lables" нажать кнопку "Add lable".
 - d. Затем в поле "label name" ввести имя для объекта. Выбрать цвет, нажать кнопку "Done".
 - е. Далее необходимо выбрать файлы, на которых будет происходить разметка.
 - f. После загрузки файлов на сервер нажимаем кнопку «Sumbit».
 - g. После создания задачи в верхнем правом углу появится сообщение о том, что задача была создана.
- 5. Открываем созданную задачу нажав на кнопку «Ореп».
- 6. После появления окна с деталями задачи, нажимаем на «Job #...»
- 7. Открывается окно разметчика.
- 8. Размечаем необходимое количество данных пользуясь подробным руководством по CVAT.
- 9. После разметки необходимо импортировать разметку:
 - а. Нажимаем «Мепи».

Вопросы для защиты лабораторной работы по теме «Подготовка набора данных инструментом CVAT»

- 1. Методы аугментации данных.
- 2. Что такое валидационный набор данных?
- 3. Какое соотношение лучше всего выдерживать у тестового и обучающего набора данных?
- 4. Основные инструменты в CVAT для разметки данных для обучения детектора?
- 5. В какие форматы возможно экспортировать данные в CVAT?

Лабораторная работа «Нейронные сети»

- 1. Пусть х обозначает входной вектор (x1, x2, ..., xn), а у обозначает выходной вектор (y1, y2, ..., yn). Пусть w и w' обозначают веса кодировщика и декодеровщика соответственно. Какой может быть функция стоимости для обучения этой нейронной сети?
- 2. Используя Python и Tensor Flow постройте каскадный автокодировщик.

Определите класс автокодировщика (файл autoencoder.py)

```
class Autoencoder:
    def init (self, input_dim, hidden_dim): ← Инициализирует переменные
    def train(self, data): ← Обучение на базе данных
    def test(self, data): ← Обучение на новых данных
```

Реализуйте конструктор, показанный в листинге:

```
Задает набор данных входного слоя
                                       Определяет веса и коэффициенты смещения в области
                                         имен, которые им можно сообщать, кроме весовых
import tensorflow as tf
                                     коэффициентов и коэффициентов сдвига декодировщика
import numpy as np
class Autoencoder:
    def __init__(self, input_dim, hidden_dim, epoch=250,
     learning_rate=0.001):
        self.epoch = epoch
                             Число циклов обучения
        self.learning_rate = learning_rate - Гиперпараметр модуля оптимизации
        x = tf.placeholder(dtype=tf.float32, shape=[None, input_dim])
        with tf.name_scope('encode'):
            weights = tf.Variable(tf.random_normal([input_dim, hidden_dim],
     dtype=tf.float32), name='weights')
            biases = tf.Variable(tf.zeros([hidden_dim]), name='biases')
             encoded = tf.nn.tanh(tf.matmul(x, weights) + biases)
        with tf.name_scope('decode'):
            weights = tf.Variable(tf.random normal([hidden dim, input dim],
     dtype=tf.float32), name='weights')
            biases = tf.Variable(tf.zeros([input_dim]), name='biases')
            decoded = tf.matmul(encoded, weights) + biases
                                                               Веса и коэффициенты
        self.x = x
                                                             смещения кодировщика
                                    Переменные
        self.encoded = encoded
                                                                   задаются в этой
                                    метода
        self.decoded = decoded
                                                                     области имен
        self.loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(self.x,
     self.train_op =
     tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss) -
        self.saver = tf.train.Saver()
Определяет модуль сохранения, чтобы
                                                                 Выбирает модуль
сохранять параметры модели, после того
                                                                    оптимизации
как процесс обучения был завершен
```

Определите метод класса train, который получит набор данных и в процессе обучения, используя эти данные, выдаст параметры для минимизации потерь.

```
Итеративно выполняет определенное число
циклов, заданных в конструкторе
                                                                     Начинает сеанс
                                                                     TensorFlow и иници-
     def train(self, data):
                                                                     ализирует все пере-
          num_samples = len(data)
                                                                     менные
          with tf.Session() as sess:
               sess.run(tf.global_variables_initializer())
              for i in range(self.epoch):
                   for j in range(num_samples):
                        1, _ = sess.run([self.loss, self.train_op],
                        feed_dict={self.x: [data[j]]})
                   if i % 10 == 0:
                        print('epoch \{0\}: loss = \{1\}'.format(i, 1))
                        self.saver.save(sess, './model.ckpt')
               self.saver.save(sess, './model.ckpt')
                                           Сохраняет полученные в резуль-
Процесс обучения нейронной сети
                                          тате обучения параметры в файл
по элементам данных выполня-
ется по одной выборке за раз
                                                               Выводит ошибку преобразова-
                                                                 ния через каждые 10 циклов
```

Создайте метод test, который позволит вам оценить автокодировщик на новых данных.

Создайте новый файл под названием main.py и воспользуйтесь классом Autoencoder, как показано в следующем листинге:

```
from autoencoder import Autoencoder
from sklearn import datasets

hidden_dim = 1
data = datasets.load_iris().data
input_dim = len(data[0])
ae = Autoencoder(input_dim, hidden_dim)
ae.train(data)
ae.test([[8, 4, 6, 2]])
```

Запуск функции train выдает отладочную информацию о том, как уменьшаются потери за эпохи. Функция test показывает информацию о процессе кодирования и декодирования:

Сожмите четырехмерный вектор до вектора одной размерности и затем декодируйте его обратно в четырехмерный вектор с некоторой потерей данных.

Вопросы для защиты лабораторной работы по теме «Нейронные сети»

1. Приведите пример простой прогнозирующей машины.

- 2. Приведите пример простого классификатора.
- 3. Что такое «нейрон»? Как происходит распространение сигналов по нейронной сети?
- 4. Как используется матричное умножение в нейронной сети с тремя слоями?
- 5. Каким образом осуществляется подготовка данных в проектах с нейронными сетями?
- 6. Как осуществляется корректировка весовых коэффициентов в процессе обучения нейронной сети?
- 7. В чем заключается суть метода «обратного распространения ошибок»?
- 8. Как описать обратное распространение ошибок с помощью матричной алгебры?
- 9. В чем заключается суть метода «градиентного спуска»?
- 10. Как используется метод градиентного спуска для обновления весовых коэффициентов?
- 11. Что такое автокодировщик? Как связаны между собой автокодировщики и нейронные сети?
- 12. Приведите пример применения автокодировщика.
- 13. Что такое «пакетное обучение»?
- 14. Как осуществляется работа с изображениями?

Лабораторная работа по теме «Сверточные нейронные сети»

- 1. Загрузите набор данных CIFAR-10 с сайта www.cs.toronto (edu/~kriz/cifar-10- python.tar.gz). В этом наборе содержатся 60 000 изображений, равномерно распределенных по 10 категориям, что представляет достаточно большой ресурс для задач классификации. Поместите файл с изображениями в рабочую директорию.
- 2. Загрузка изображений из файла CIFAR-10 в Python, для этого поместите код в файл cifar_tools.py:

```
import pickle

def unpickle(file):
    fo = open(file, 'rb')
    dict = pickle.load(fo, encoding='latin1')
    fo.close()
    return dict
```

3. Проведите очистку набора данных:

```
Преобразует изображение в оттенки
серого осреднением насыщенности цвета
import numpy as np
                                     Перестраивает данные в матрицу
                                            32 × 32 с тремя каналами
def clean(data):
     imgs = data.reshape(data.shape[0], 3, 32, 32)
     grayscale_imgs = imgs.mean(1)
    cropped_imgs = grayscale_imgs[:, 4:28, 4:28]
                                                                   Обрезает изображение
    img_data = cropped_imgs.reshape(data.shape[0], -1)
                                                                   32 × 32 в изображение
    img_size = np.shape(img_data)[1]
                                                                   24 \times 24
    means = np.mean(img_data, axis=1)
    meansT = means.reshape(len(means), 1)
    stds = np.std(img_data, axis=1)
    stdsT = stds.reshape(len(stds), 1)
    adj_stds = np.maximum(stdsT, 1.0 / np.sqrt(img_size))
    normalized = (img_data - meansT) / adj_stds ◀
                                                             Нормализует интенсивности пик-
    return normalized
                                                             селов путем вычитания среднего
                                                             и деления на среднеквадратиче-
                                                             ское отклонение
```

4. Сохраните все изображения из набора данных CIFAR-10 и запустите функцию очистки.

```
def read data(directory):
    names = unpickle('{}/batches.meta'.format(directory))['label_names']
    print('names', names)
   data, labels = [], []
    for i in range(1, 6):
        filename = '{}/data_batch_{}'.format(directory, i)
        batch_data = unpickle(filename)
        if len(data) > 0:
            data = np.vstack((data, batch_data['data']))
            labels = np.hstack((labels, batch_data['labels']))
        else:
            data = batch_data['data']
            labels = batch data['labels']
    print(np.shape(data), np.shape(labels))
   data = clean(data)
   data = data.astype(np.float32)
    return names, data, labels
```

5. Сформируйте выборку нескольких изображений из набора данных и визуализируйте их:

```
names, data, labels = \
    cifar tools.read_data('your/location/to/cifar-10-batches-py')
```

6. Выполните визуализацию изображений из набора данных:

import cifar_tools

```
import numpy as np
import matplotlib.pyplot as plt
import random
                                                         Преобразует изображения
def show some examples(names, data, labels):
                                                         до необходимого числа строк
                                                         и столбцов
    plt.figure()
    rows, cols = 4, 4
    random_idxs = random.sample(range(len(data)), rows * cols)
    for i in range(rows * cols):
        plt.subplot(rows, cols, i + 1)
                                                           Случайным образом выбирает
        j = random_idxs[i]
                                                         изображения из набора данных,
                                                          чтобы их можно было показать
        plt.title(names[labels[j]])
        img = np.reshape(data[j, :], (24, 24))
        plt.imshow(img, cmap='Greys_r')
        plt.axis('off')
    plt.tight layout()
    plt.savefig('cifar_examples.png')
show_some_examples(names, data, labels)
```

7. Откройте новый файл conv_visuals.py. Инициализируйте случайным образом 32 фильтра. Это можно сделать, задав переменную W размером $5 \times 5 \times 1 \times 32$. Первые два числа соответствуют размеру фильтра. Последнее число равно числу сверток (32). Единица в размере переменной соответствует размерности входа, потому что функция conv2d способна выполнять свертку изображений с несколькими входами (в примере внимание уделяется только изображению в градациях серого, поэтому канал один). В следующем листинге показан процесс получения фильтров:

```
Определяет достаточное число строк и столбцов,
                                                             Определяет тензор,
    чтобы показать 32 фрагмента (рис. 9.4)
                                                             представляющий слу-
                                                             чайные фильтры
    def show_weights(W, filename=None):
                                                Визуально представляет каждую
        plt.figure()
                                                матрицу фильтров
        rows, cols = 4, 8
        for i in range(np.shape(W)[3]):
      img = W[:, :, 0, i]
      plt.subplot(rows, cols, i + 1)
      plt.imshow(img, cmap='Greys_r', interpolation='none')
      plt.axis('off')
  if filename:
      plt.savefig(filename)
  else:
      plt.show()
   8. Измените код предыдущего листинга для генерирования 64 фильтров размером 3 × 3.
   9. Используйте сеанс, как показано в следующем листинге, и с помощью оператора
global variables initializer выполните инициализацию весов.
                                                              Затем
                                                                      вызовите
show weights для визуализации случайных фильтров:
 with tf.Session() as sess:
     sess.run(tf.global_variables_initializer())
```

функцию

w_val = sess.run(w) show_weights(W_val, 'step0_weights.png') Опишите демонстрацию процедуры свертки: def show conv results(data, filename=None): plt.figure() rows, cols = 4, 8 for i in range(np.shape(data)[3]): plt.subplot(rows, cols, i + 1) plt.imshow(img, cmap='Greys_r', interpolation='none') plt.axis('off') if filename: plt.savefig(filename) else: plt.show()

Напишите визуализацию свёртки:

11.

```
raw_data = data[4, :]
raw_img = np.reshape(raw_data, (24, 24))
                                                 Берет изображение из набора
plt.figure()
                                                 данных CIFAR и визуализирует его
plt.imshow(raw_img, cmap='Greys_r')
                                                           Определяет входной тензор для
plt.savefig('input_image.png')
                                                           изображения размером 24 × 24
x = tf.reshape(raw_data, shape=[-1, 24, 24, 1]) \blacktriangleleft
b = tf.Variable(tf.random_normal([32]))
                                                                        Определяет фильт-
conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
                                                                        ры и соответствую-
conv_with_b = tf.nn.bias_add(conv, b)
                                                                       щие параметры
conv_out = tf.nn.relu(conv_with_b)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    conv_val = sess.run(conv)
                                                                     Выполняет свертку
    show conv results(conv val, 'step1 convs.png')
                                                                     выбранного
    print(np.shape(conv val))
                                                                     изображения
conv_out_val = sess.run(conv_out)
    show_conv_results(conv_out_val, 'step2_conv_outs.png')
    print(np.shape(conv_out_val))
```

- 12. Допустим, мы хотим применить подвыборку с определением максимального значения изображения размером 32×32 . Если размер окна 2×2 , а длина шага 2, насколько большим будет получившееся после подвыборки изображение?
 - 13. Примените функцию maxpool для подвыборки свернутых изображений:

14. Настройте веса сверточной нейронной сети:

```
import numpy as np
import matplotlib.pyplot as plt
import cifar_tools
                                                              Загружает набор
import tensorflow as tf
                                                                    данных
names, data, labels = \
    cifar tools.read data('/home/binroot/res/cifar-10-batches-py') ◀
x = tf.placeholder(tf.float32, [None, 24 * 24])
                                                          Определяет входные и выходные
y = tf.placeholder(tf.float32, [None, len(names)])
                                                          переменные-заполнители
W1 = tf.Variable(tf.random_normal([5, 5, 1, 64]))
                                                          Использует 64 свертки с окном
b1 = tf.Variable(tf.random_normal([64]))
                                                          размером 5 × 5
W2 = tf.Variable(tf.random_normal([5, 5, 64, 64]))
                                                          Использует еще 64 свертки
b2 = tf.Variable(tf.random_normal([64]))
                                                          с окном размером 5 × 5
W3 = tf.Variable(tf.random_normal([6*6*64, 1024]))
                                                          Вводит полносвязный
b3 = tf.Variable(tf.random_normal([1024]))
W out = tf.Variable(tf.random normal([1024, len(names)]))
b_out = tf.Variable(tf.random_normal([len(names)]))
                                          Определяет переменные для
                                         полносвязного линейного слоя
```

15. Определите вспомогательную функцию для выполнения свертки, добавьте член смещения, а затем добавьте функцию активации. Вместе эти три шага образуют слой свертки сети:

```
def conv_layer(x, W, b):
    conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    conv_with_b = tf.nn.bias_add(conv, b)
    conv_out = tf.nn.relu(conv_with_b)
    return conv_out
```

16. Задайте слой max-pool, определив ядро и размер шага:

```
def maxpool_layer(conv, k=2):
    return tf.nn.max_pool(conv, ksize=[1, k, k, 1], strides=[1, k, k, 1],
    padding='SAME')
```

17. Создайте полную модель сверточной нейронной сети:

```
Строит первый слой свертки
                                                       и подвыборки с определением
  Строит второй слой
                                                           максимального значения
   def model():
       x_reshaped = tf.reshape(x, shape=[-1, 24, 24, 1])
       conv_out1 = conv_layer(x_reshaped, W1, b1)
       maxpool_out1 = maxpool_layer(conv_out1)
       norm1 = tf.nn.lrn(maxpool_out1, 4, bias=1.0, alpha=0.001 / 9.0,
        beta=0.75)
       conv_out2 = conv_layer(norm1, W2, b2)
       norm2 = tf.nn.lrn(conv_out2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
       maxpool_out2 = maxpool_layer(norm2)
maxpool_reshaped = tf.reshape(maxpool_out2, [-1,
W3.get_shape().as_list()[0]])
local = tf.add(tf.matmul(maxpool_reshaped, W3), b3)
                                                           Строит итоговые
local out = tf.nn.relu(local)
                                                           полносвязные слои
out = tf.add(tf.matmul(local out, W out), b out)
return out
```

18. Задайте функцию стоимости, которую требуется минимизировать. Воспользуйтесь

функцией softmax_cross_entropy_with_ logits из библиотеки Tensor Flow, описание которой можно найти в официальной документации (http://mng.bz/8mEk):

```
model_op = model()

cost = tf.reduce_mean( ← 3адает кросс-энтропийную функцию потерь
    tf.nn.softmax_cross_entropy_with_logits(logits=model_op, labels=y)
)

train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost) ←

correct_pred = tf.equal(tf.argmax(model_op, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

Определяет оператор обучения
для минимизации функции потерь
```

19. Проведите циклический перебор всех изображений небольшими пакетами для обучения нейронной сети. Со временем веса начнут медленно сходиться к локальному оптимуму, что позволит точно распознать изображения по обучающим данным:

```
with tf.Session() as sess:
   sess.run(tf.global variables initializer())
   onehot_labels = tf.one_hot(labels, len(names), on_value=1., off_value=0.,
    axis=-1)
   onehot_vals = sess.run(onehot_labels)
   batch_size = len(data) // 200
   print('batch size', batch_size)
   print('EPOCH', j)
       batch data = data[i:i+batch size, :]
          batch_onehot_vals = onehot_vals[i:i+batch_size, :]
          _, accuracy_val = sess.run([train_op, accuracy], feed_dict={x:
batch_data, y: batch_onehot_vals})
      if i % 1000 == 0:
          print(i, accuracy_val)
print('DONE WITH EPOCH')
```

Вопросы для защиты лабораторной работы по теме «Сверточные нейронные сети»

- 1. При решении каких задач выявляются недостатки нейронных сетей?
- 2. Каким образом работает сверточная нейронная сеть?
- 3. Для решения каких задач используются сверточные нейронные сети?
- 4. Как осуществляется обработка изображений с использованием сверточных нейронных сетей?
- 5. Какие возможности предоставляет библиотека Tensor Flow для разработки сверточной нейронной сети?
- 6. Как повысить эффективность сверточной нейронной сети?

Вопросы к экзамену:

- 1. Основы обработки изображений. Основные инструменты.
- 2. Основы обработки изображений. Применение NumPy и Matplotlib.
- 3. Основы обработки изображений. Очистка изображений от шумов.
- 4. Локальные дескрипторы изображений. Детектор углов Харриса.
- 5. Локальные дескрипторы изображений. SIFT.
- 6. Локальные дескрипторы изображений. Сопоставление изображений с геометками.
- 7. Гомографии.
- 8. Деформирование изображений.

- 9. Создание панорам.
- 10. Эпиполярная геометрия.
- 11. Многовидовая реконструкция.
- 12. Стереоизображения.
- 13. Кластеризация изображений. Основные методы.
- 14. Опишите алгоритм кластеризации методом К-средних.
- 15. Спектральная кластеризация.
- 16. Байесовский классификатор.
- 17. Сегментация изображений. Основные методы.
- 18. Обработка видео в OpenCV.
- 19. Трассировка в ОрепСУ.
- 20. Искусственные нейронные сети, функции активации, топология сети, количество слоев, направление перемещения информации, количество узлов в слое.
- 21. Реализация искусственных нейронных сетей на языке Python (на основе анализа документации разработчиков).
- 22. Интеграция алгоритма с программой на языке Python. Примеры использования искусственных нейронных сетей.
- 23. Обучение искусственной нейронной сети методом обратного распространения ошибки, градиентный спуск.
- 24. Реализация обратного распространения ошибки и градиентного спуска на языке Python (на основе анализа документации разработчиков). Примеры использования метода обратного распространения ошибки.
- 25. Введение в нейронные сети. Простая прогнозирующая машина.
- 26. Простой классификатор.
- 27. Нейроны. Распространение сигналов по нейронной сети.
- 28. Использование матричного умножения в нейронной сети с тремя слоями.
- 29. Подготовка данных: входные значения; выходные значения; случайные начальные значения весовых коэффициентов.
- 30. Корректировка весовых коэффициентов в процессе обучения нейронной сети.
- 31. Обратное распространение ошибок.
- 32. Описание обратного распространения ошибок с помощью матричной алгебры.
- 33. Использование градиентного спуска для обновления весовых коэффициентов.
- 34. Подготовка данных: входные значения; выходные значения; случайные начальные значения весовых коэффициентов.
- 35. Автокодировщики.
- 36. Применение автокодировщиков.
- 37. Пакетное обучение.
- 38. Основные понятия обучения с подкреплением: агент; политика; стратегия; выгода.
- 39. Функция выгоды. Рекурсивный учет выгод будущих действий.
- 40. Применение обучения с подкреплением.
- 41. Реализация обучения с подкреплением.
- 42. Недостатки нейронных сетей.
- 43. Сверточные нейронные сети.
- 44. Применение сверточных нейронных сетей.
- 45. Повышение эффективности сверточной нейронной сети.
- 46. Нечеткие модели и методы.

Уровни оценки компетенций следующие: базовый – 55-69 баллов, повышенный – 70-100 баллов. Преподаватель проводит систематический контроль знаний студентов, ориентируясь на перечень вопросов для проведения зачета/экзамена.

Критерии оценки лабораторных работ занятий/самостоятельной работы студента

- *5 баллов* выставляется студенту, если работа выполнена самостоятельно и полностью верно; представлен отчет, содержащий результаты выполнения заданий работы и ответы на вопросы для подготовки/защиты лабораторной работы; студент анализирует результаты, полученные в ходе выполнения работы, делает выводы.
- 4 балла выставляется студенту, если работа выполнена самостоятельно, в целом правильно, но имеются некоторые неточности в выполнении заданий или ответах на контрольные вопросы; представлен отчет, содержащий результаты выполнения заданий и ответы на вопросы для подготовки/защиты лабораторной работы; студент анализирует результаты, полученные в ходе выполнения работы, делает выводы.
- *3 балла* выставляется студенту, если работа выполнена самостоятельно, в целом правильно, но имеются некоторые неточности в выполнении заданий или ответах на контрольные вопросы; представлен отчет, содержащий результаты выполнения заданий лабораторной работы и ответы на вопросы для подготовки/защиты лабораторной работы; студент испытывает затруднения при проведении анализа результатов, полученных в ходе выполнения лабораторной работы, и формулировке выводов.
- -2 балла выставляется студенту, если студент не до конца справился с заданием, не совсем верно ответил на вопросы для подготовки/защиты лабораторной работы, однако оформил отчет по результатам работы.
- *1 балл* выставляется студенту, если студент не до конца справился с заданием, не совсем верно ответил на вопросы для подготовки/защиты лабораторной работы, не оформил отчет по результатам работы.
- *0 баллов* выставляется студенту, если студент не справился с заданием, неверно ответил на вопросы для подготовки/защиты лабораторной работы.

Критерии оценивания устного ответа студента на зачете, экзамене

Ответ на зачете и экзамене оценивается исходя из 40 баллов (максимум).

Зачетный и экзаменационный билет содержит теоретический вопрос и практическое задание, преподаватель может задавать дополнительные вопросы. Полный ответ на основной вопрос оценивается максимум в 20 баллов, предполагает свободное изложение (не чтение) всего необходимого материала, ответы студента на уточняющие вопросы, если они есть. Правильный ответ на дополнительный вопрос оценивается максимум в 5 баллов. Правильное выполнение практического задания оценивается в 20 баллов.

5.3 Шкала и критерии оценивания компетенций на различных этапах их формирования

Шкала оценивания компетенций:

Оценка в 100-балльной шкале	Оценка в 5-ти балльной шкале	Уровень сформированности компетенций
0-54 баллов	неудовлетворительно (не зачтено)	недостаточный
55-69 баллов	удовлетворительно (зачтено)	базовый
70-85 баллов	хорошо (зачтено)	<u>.</u>
86-100 баллов	отлично (зачтено)	повышенный

Критерии оценивания компетенций:

	Критерии оценивания компетенций			
Индикаторы достижения компетенций	Недостаточный уровень	Базовый уровень	Повышенный уровень	
ИОПК 10.1 Исследует	Не знает	Знает содержание,	Отлично знает	
современные	содержание,	объекты и субъекты	содержание,	
проблемы	объекты и субъекты	информационного	объекты и субъекты	
информатики,	информационного	общества и	информационного	
искусственного	общества и	цифровой	общества и	
интеллекта и развития	цифровой	экономики, критерии	цифровой	
информационного	экономики,	эффективности	экономики,	
общества, цифровой	критерии	функционирования	критерии	
экономики.	эффективности	информационного	эффективности	
	функционирования	общества,	функционирования	
	информационного	теоретические	информационного	
	общества,	проблемы	общества,	
	теоретические	информатики,	теоретические	
	проблемы	искусственного	проблемы	
	информатики,	интеллекта,	информатики,	
	искусственного	современные	искусственного	
	интеллекта,	методы, средства,	интеллекта,	
	современные	стандарты	современные	
	методы, средства,	информатики для	методы, средства,	
	стандарты	решения прикладных	стандарты	
	информатики для	задач различных	информатики для	
	решения	классов; правовые,	решения	
	прикладных задач	экономические,	прикладных задач	
	различных классов;	социальные и	различных классов;	
	правовые,	психологические	правовые,	
	экономические,	аспекты	экономические,	
	социальные и	информатизации	социальные и	
	психологические	деятельности	психологические	
	аспекты	организационно-	аспекты	
	информатизации	экономических	информатизации	
	деятельности	систем	деятельности	
	организационно-		организационно-	
	экономических	Умеет применять	экономических	
	систем	при решении задач	систем	
		профессиональной		
	Не умеет применять	деятельности	На высоком уровне	
	при решении задач	критерии	применяет при	
	профессиональной	эффективности	решении задач	
	деятельности	функционирования	профессиональной	
	критерии	информационного	деятельности	
	эффективности	общества и	критерии	
	функционирования	цифровой	эффективности	
	информационного	экономики;	функционирования	
	общества и	структуру	информационного	
	цифровой	интеллектуального	общества и	
	экономики;	капитала, методы	цифровой	
	структуру	оценки	экономики;	

	интеллектуального капитала, методы оценки эффективности	эффективности	структуру интеллектуального капитала, методы оценки эффективности
ИОПК 10.2. Проводит анализ современных методов и средств информатики и искусственного интеллекта для решения задач профессиональной деятельности	Не знает состав современных методов и средств информатики, передовые методы искусственного интеллекта для решения задач профессиональной деятельности Не умеет проводить	Знает состав современных методов и средств информатики, передовые методы искусственного интеллекта для решения задач профессиональной деятельности Умеет проводить	Отлично знает состав современных методов и средств информатики, передовые методы искусственного интеллекта для решения задач профессиональной деятельности На высоком уровне
	анализ современных методов и средств информатики и искусственного интеллекта для решения прикладных задач различных классов	анализ современных методов и средств информатики и искусственного интеллекта для решения прикладных задач различных классов	умеет проводить анализ современных методов и средств информатики и искусственного интеллекта для решения прикладных задач различных классов
ИПК11.1. Руководит работами по оценке и выбору моделей искусственных нейронных сетей и инструментальных средств для решения поставленных задач со стороны образовательной организации.	Не знает функциональность современных инструментальных средств и систем программирования в области создания моделей искусственных нейронных сетей.	Знает функциональность современных инструментальных средств и систем программирования в области создания моделей искусственных нейронных сетей.	Демонстрирует глубокое знание и понимание функциональности современных инструментальных средств и систем программирования в области создания моделей искусственных нейронных сетей.
	Не умеет проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения.	Умеет проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения в стандартной ситуации.	Умеет проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения в новой или нестандартной ситуации.

	T	T	T
	Не умеет применять современные инструментальные методы и средства обучения моделей искусственных нейронных сетей.	Умеет применять современные инструментальные методы и средства обучения моделей искусственных нейронных сетей в стандартной ситуации.	Умеет применять современные инструментальные методы и средства обучения моделей искусственных нейронных сетей в новой или нестандартной ситуации.
ИПК11.2. Руководит созданием систем искусственного интеллекта на основе моделей искусственных нейронных сетей и инструментальных средств со стороны образовательной организации.	Не знает принципы построения систем искусственного интеллекта на основе искусственных нейронных сетей, методы и подходы к планированию и реализации проектов по созданию систем искусственного интеллекта.	Не знает принципы построения систем искусственного интеллекта на основе искусственных нейронных сетей, методы и подходы к планированию и реализации проектов по созданию систем искусственного интеллекта.	Демонстрирует глубокое знание и понимание принципов построения систем искусственного интеллекта на основе искусственных нейронных сетей, методов и подходов к планированию и реализации проектов по созданию систем искусственного интеллекта.
	Не умеет руководить выполнением коллективной проектной деятельности для создания, поддержки и использования систем искусственного интеллекта на основе искусственных нейронных сетей.	Умеет руководить выполнением коллективной проектной деятельности для создания, поддержки и использования систем искусственного интеллекта на основе искусственных нейронных сетей в стандартной ситуации.	Умеет руководить выполнением коллективной проектной деятельности для создания, поддержки и использования систем искусственного интеллекта на основе искусственных нейронных сетей в новой или нестандартной ситуации.
ИПК11.3. Руководит проектами по разработке, систем искусственного интеллекта на основе моделей глубоких нейронных сетей и нечетких моделей и методов со стороны	Не знает принципы построения моделей глубоких нейронных сетей и глубокого машинного обучения.	Знает принципы построения моделей глубоких нейронных сетей и глубокого машинного обучения.	Демонстрирует глубокое знание и понимание принципов построения моделей глубоких нейронных сетей и глубокого машинного обучения.

образовательной	Не знает подходы к	Знает подходы к	Демонстрирует
организации.	применению	применению	глубокое знание и
оргинизиции.	моделей на основе	моделей на основе	понимание подходов
	нечеткой логики в	нечеткой логики в	к применению
	системах	системах	моделей на основе
	искусственного	искусственного	нечеткой логики в
	интеллекта.	интеллекта.	системах
			искусственного
			интеллекта.
	Не умеет	Умеет руководить	Умеет руководить
	руководить	выполнением	выполнением
	выполнением	коллективной	коллективной
	коллективной	проектной	проектной
	проектной	деятельности для	деятельности для
	деятельности для	создания, поддержки	создания, поддержки
	создания,	и использования	и использования
	поддержки и	систем	систем
	использования	искусственного	искусственного
	систем	интеллекта на основе	интеллекта на
	искусственного	моделей глубоких	основе моделей
	интеллекта на	нейронных сетей и	глубоких нейронных
	основе моделей	нечетких моделей и	сетей и нечетких
	глубоких нейронных	методов в	моделей и методов в
	сетей и нечетких	стандартной	новой или
	моделей и методов.	ситуации.	нестандартной
			ситуации.
ИПК13.1. Решает	Не знает принципы	Знает принципы	Демонстрирует
прикладные задачи и	построения систем	построения систем	глубокое знание и
реализует проекты в	компьютерного	компьютерного	понимание
области сквозной	зрения, методы и	зрения, методы и	принципов
цифровой технологии	подходы к	подходы к	построения систем
«Компьютерное	планированию и	планированию и	компьютерного
зрение» со стороны	реализации	реализации проектов	зрения, методов и
образовательной	проектов по	по созданию систем	подходов к
организации.	созданию систем	искусственного	планированию и
	искусственного	интеллекта на основе	реализации проектов
	интеллекта на	сквозной цифровой	по созданию систем
	основе сквозной	технологии	искусственного
	цифровой	«Компьютерное	интеллекта на
	технологии	зрение».	основе сквозной
	«Компьютерное		цифровой технологии
	зрение».		«Компьютерное
			зрение».
	Не умеет решать	Умеет решать задачи	Умеет решать задачи
	задачи по	по выполнению	по выполнению
	выполнению	коллективной	коллективной
	коллективной	проектной	проектной
	проектной	деятельности для	деятельности для
	деятельности для	создания, поддержки	создания, поддержки
	создания,	и использования	и использования
	поддержки и	систем	систем
	1 7 7 1 1	i .	i

использования	искусственного	искусственного
систем	интеллекта на основе	интеллекта на
искусственного	сквозной цифровой	основе сквозной
интеллекта на	технологии	цифровой
основе сквозной	«Компьютерное	технологии
цифровой	зрение» со стороны	«Компьютерное
технологии	заказчика в	зрение» со стороны
«Компьютерное	стандартной	заказчика в новой
зрение» со стороны	ситуации.	или нестандартной
заказчика.		ситуации.

- 6 Учебно-методическое и информационное обеспечение дисциплины (модуля)
- 6.1 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература:

- 1. Селянкин, В. В. Решение задач компьютерного зрения: учебное пособие: [16+] / В. В. Селянкин. Таганрог: Южный федеральный университет, 2016. 93 с.: схем., табл. URL: https://biblioclub.ru/index.php?page=book&id=493304
- 2. Келлехер, Д. Наука о данных: базовый курс: [16+] / Д. Келлехер, Б. Тирни; науч. ред. 3. Мамедьяров; пер. с англ. М. Белоголовского. Москва: Альпина Паблишер, 2020. 224 с.: схем., табл. URL: https://biblioclub.ru/index.php?page=book&id=598235

Дополнительная литература:

- 1. Крутиков, В. Н. Анализ данных : учебное пособие / В. Н. Крутиков, В. В. Мешечкин. Кемерово : Кемеровский государственный университет, 2014. 138 с. : ил. URL: https://biblioclub.ru/index.php?page=book&id=278426
- 2. Пролубников, А. В. Математические методы распознавания образов : учебное пособие : [16+] / А. В. Пролубников. Омск : Омский государственный университет им. Ф.М. Достоевского, 2020. 110 с. URL: https://biblioclub.ru/index.php?page=book&id=614061
- 3. Нейроинформатика: курс / Национальный Открытый Университет "ИНТУИТ". Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), 2007. 297 с. : схем.

- URL: https://biblioclub.ru/index.php?page=book&id=234530

6.2 Перечень информационных технологий, используемых при изучении дисциплины, включая программное обеспечение

- 1. ОС семейства Microsoft Windows.
- 2. OpenCV.
- 3. Python. Jupyter notebook.
- 4. Microsoft Office.
- 5. Mozilla Firefox.

7 Материально-техническое обеспечение дисциплины (модуля)

Для осуществления образовательного процесса по дисциплине (модулю) необходима следующая материально-техническая база:

Оборудованные учебно объекты для пров практических за	ведения	Перечень основного оборудования
Наименование	Адрес	
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации. Компьютерный класс (помещение для самостоятельной работы).	Советский пр., 8, 619.	Видеопроекционная аппаратура: - проектор Optoma DW318e (стационарный) интерактивная доска Classic Solution CS-IR-96Ts компьютеры AMD Ryzen 3 PRO 3200G 3.3ГГц (15 шт.) с подключением к сети Интернет и обеспечением доступа в электронную информационно -образовательную среду; -наборы ученической мебели на 15 посадочных мест
Учебная аудитория для проведения занятий лекционного типа,	Советский пр., 8, 616.	Видеопроекционная аппаратура: -настенный экран Screen Media Economy, формат 203х203проектор Beng 612C DLP, SVGA (800х600)

занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации. Компьютерный класс (помещение для самостоятельной работы).		(стационарный), компьютеры (14 шт. для студентов, 1 шт. для преподавателя): Intel Core I5-9400F 2.9 ГГц -10 шт.; РепtіumDual E2200 2.2 ГГц – 5 шт. с подключением к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду; -ноутбук DellInspiron (переносной); - Веб-камера Canon FC-120 (переносная) -наборы ученической мебели на 14 посадочных мест, рабочее место преподавателя
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации. Компьютерный класс (помещение для самостоятельной работы)	Советский пр., 8, 402.	Видеопроекционная аппаратура: -проекционный экран Diplomat AV (1:1) 60/60 152*152 MW -проектор Ansi (стационарный) -ноутбук Acer (переносной) -компьютеры Intel C2D E8400 3.00 ГГц -25 шт. для студентов с подключением к сети Интернет и обеспечением доступа в электронную информационнообразовательную среду; - Веб-камера Canon FC-120 (переносная) -наборы ученической мебели на 54 посадочных места, рабочее место преподавателя, доска, мел.
Компьютерный класс (помещение для самостоятельной работы)	Советский пр., 8, 614.	Видеопроекционная аппаратура: - проектор NEC NP40 (NP40G) DLP 220 ANSI (переносной) комплекс «Активный экран» - ACTIVE board 78 - компьютер Celeron 2.4 ГГц -14 шт. для студентов с подключением к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду; - графическая станция; - наборы ученической мебели на 15 посадочных мест.

8 Особенности реализации дисциплины (модуля)для инвалидов и лиц с ограниченными возможностями здоровья

8.1. Общий раздел

Организация образовательного процесса лиц с инвалидностью и OB3, помимо указанных в разделе «Общие сведения о программе» документах, строится в соответствие с:

- Федеральными требованиями к организации образовательного процесса для обучения инвалидов и лиц с ОВЗ в профессиональных образовательных организациях, в том числе оснащению образовательного процесса (Письмо Министерства образования и науки РФ, Департамент государственной политики в сфере подготовки рабочих кадров и ДПО от 2013 г., №06-2412ВН); - Методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с ОВЗ в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (Министерство образования и науки РФ, от 08.04.2014 г., №1АК-44/05ВН) - Приказом Рособрнадзора от 12.03.2015 г. № 279 в части заполнения Справки «О наличии у профессиональной образовательной организации, образовательной организации высшего образования, организации, осуществляющей образовательную деятельность по программам профессионального обучения, специальных условий для получения образования обучающимися с ограниченными возможностями здоровья (Приложение 13) - Индивидуальной программой реабилитации инвалида (ИПР).

8.2. Особенности преподавания дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

СЛАБОВИДЯЩИЕ СТУДЕНТЫ

1.	Специальные
усл	ювия,
обе	еспечиваемые
В	процессе
пре	еподавания
ДИ	сциплины

предоставление образовательного контента в текстовом электронном формате, позволяющем переводить плоскопечатную информацию в аудиальную форму;

возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента;

предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале;

использование чёткого и увеличенного по размеру шрифта и графических объектов в мультимедийных презентациях;

использование инструментов «лупа», «прожектор» при работе с интерактивной доской;

озвучивание визуальной информации, представленной обучающимся в ходе занятий;

обеспечение раздаточным материалом, дублирующим информацию, выводимую на экран;

наличие подписей и описания у всех используемых в процессе обучения рисунков и иных графических объектов, что даёт возможность перевести письменный текст в аудиальный,

обеспечение особого речевого режима преподавания: лекции читаются громко, разборчиво, отчётливо, с паузами между смысловыми блоками информации, обеспечивается интонирование, повторение, акцентирование, профилактика рассеивания внимания;

минимизация внешнего шума и обеспечение спокойной аудиальной обстановки;

возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее подготовленном тексте).

увеличение доли методов социальной стимуляции (обращение внимания, апелляция к ограничениям по времени, контактные виды работ, групповые задания и др.) на практических и лабораторных занятиях;

минимизирование заданий, требующих активное использование зрительной памяти и зрительного внимания;

применение поэтапной системы контроля, более частый контроль выполнения заданий для самостоятельной работы

2. Адаптационные и вспомогательны е технологии, используемые в процессе преподавания дисциплины

Технологии озвучивания текста: обеспечиваются применением компьютерных программ, предоставляющих возможность озвучивать плоскопечатную информацию (программа «синтезатор речи», «программа экранного доступа для чтения с экрана», «программа оптического распознавания текста»). Основные функции программ речевого доступа: озвучивание информации, вводимой с клавиатуры; автоматическое озвучивание текстовой информации, выводимой на экран другими программами; чтение фрагментов экрана по командам пользователя; отслеживание изменений на экране и оповещение о них пользователя.

Технологии здоровьесбережения: обеспечиваются применением интерактивных досок с функцией «прожектора» и «лупы»; соблюдением требований к экранному тексту (больший размер элементов управления; чёткий курсор; чёткие границы между элементами; возможность работы в ограниченной области экрана; преимущество к использованию модальных окон, позволяющих переходить друг к другу без закрытия предыдущего. Во время проведения занятия учитывается допустимая продолжительность непрерывной зрительной нагрузки

Технологии дистанционного обучения: обеспечиваются наличием корпоративного образовательного портала, созданного разработчиками на платформе Sakai. Образовательный портал предоставляет студентам с ОВЗ и инвалидностью возможность выполнять различные операции:

получать варианты заданий и отправлять выполненные;

узнавать результаты выполненных работ и знакомиться с рецензией на них; получать различную справочную информацию, касающуюся учебного процесса и посылать сообщения преподавателю и любому из администраторов;

отправлять материалы, относящиеся к дисциплинам текущего семестра, а также отчеты по практике и другие файлы;

иметь дистанционный доступ к информационным ресурсам: учебным и учебно-методическим материалам, расписанию занятий и т.д.;

задавать вопросы преподавателю по его учебной дисциплине, получать конкретную информацию по тем или иным учебным и/или организационным вопросам,

проходить тестирование, выполняя задания на выбор правильных ответов, установление соответствия, заполнение пропусков, установление истинности или ложности, а также давать развёрнутые ответы на поставленные вопросы.

Для студентов, не имеющих возможности посещать очные занятия, осуществляются онлайн-консультирование. Консультации предполагают дополнительный разбор учебного материала и восполнение пробелов в знаниях студентов.

Технологии индивидуализации обучения: обеспечиваются возможностью

	применения индивидуальных устройств и средств, ПК, учётом темпов		
	работы и утомляемости, предоставлением дополнительных консультаций.		
3. Адаптация	В ходе проведения промежуточной аттестации предусмотрено:		
процедуры	- предъявление обучающимся печатных и (или) электронных материалов в		
проведения	формах, адаптированных к ограничениям их здоровья;		
промежуточной	- возможность пользоваться индивидуальными устройствами и средствами,		
аттестации	позволяющими адаптировать материалы, осуществлять приём и передачу		
	информации с учетом их индивидуальных особенностей;		
	- увеличение продолжительности проведения аттестации;		
	- возможность присутствия ассистента и оказания им необходимой помощи		
	(занять рабочее место, передвигаться, прочитать и оформить задание,		
	общаться с преподавателем).		
4.	http://umcvpo.ru/about-project - Федеральный портал высшего образования		
Дополнительное	студентов с инвалидностью и OB3		
информационно-	https://www.chsu.ru/fakultety/ffkis/rc - Сайт РЦ поддержки обучающихся с		
методическое	ОВЗ и работающих с этой категорией лиц ЧГУ		
обеспечение	http://nvda.ru/ - Программа экранного доступа «NVDA		
	(NonVisualDesktopAccess)» («Синтезатор речи») для перевода письменной		
	речи в устную		

СТУДЕНТЫ С НАРУШЕНИЯМИ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА (маломобильные студенты, студенты, имеющие трудности передвижения и патологию верхних конечностей)

студенты, студент	ы, имеющие трудности передвижения и патологию верхних конечностей)
1. Специальные	возможность использовать специальное программное обеспечение и
условия,	специальное оборудование, предоставляемое по линии ФСС и позволяющее
обеспечиваемые	компенсировать двигательный дефект (коляски, ходунки, трости и др.);
в процессе	предоставление возможности предкурсового ознакомления с содержанием
преподавания	учебной дисциплины и материалом по курсу за счёт размещения
дисциплины	информации на корпоративном образовательном портале;
	применение дополнительных средств активизации процессов запоминания и
	повторения;
	опора на определенные и точные понятия;
	использование для иллюстрации конкретных примеров;
	применение вопросов для мониторинга понимания;
	разделение изучаемого материала на небольшие логические блоки;
	увеличение доли конкретного материала и соблюдение принципа от
	простого к сложному при объяснении материала;
	наличие чёткой системы и алгоритма организации самостоятельных работ и
	проверки заданий с обязательной корректировкой и комментариями;
	увеличение доли методов социальной стимуляции (обращение внимания,
	апелляция к ограничениям по времени, контактные виды работ, групповые
	задания др.);
	обеспечение беспрепятственного доступа в помещения, а также пребывания
	них;
	наличие возможности использовать индивидуальные устройства и средства,
	позволяющие обеспечить реализацию эргономических принципов и
	комфортное пребывание на месте в течение всего периода учёбы (подставки,
2	специальные подушки и др.).
2.	Технологии здоровьесбережения: обеспечиваются соблюдением
Адаптационные	ортопедического режима (использование ходунков, инвалидных колясок,
И	трости), регулярной сменой положения тела в целях нормализации тонуса
вспомогательны	мышц спины, профилактикой утомляемости, соблюдение эргономического
е технологии,	режима и обеспечением архитектурной доступности среды (окружающее

используемые в	пространство, расположение учебного инвентаря и оборудования аудиторий
процессе	обеспечивают возможность доступа в помещении и комфортного
преподавания	нахождения в нём).
дисциплины	
дисциплины	-
	специализированных индивидуальных компьютерных средств (специальные
	клавиатуры, мыши, компьютерная программа «виртуальная клавиатура» и
	др.).
	Технологии дистанционного обучения: обеспечиваются наличием
	корпоративного образовательного портала, созданного разработчиками на
	платформе Sakai. Образовательный портал предоставляет студентам с ОВЗ и
	инвалидностью возможность выполнять различные операции:
	получать варианты заданий и отправлять выполненные;
	узнавать результаты выполненных работ и знакомиться с рецензией на них;
	получать различную справочную информацию, касающуюся учебного
	процесса и посылать сообщения преподавателю и любому из
	администраторов;
	отправлять материалы, относящиеся к дисциплинам текущего семестра, а
	также отчеты по практике и другие файлы;
	иметь дистанционный доступ к информационным ресурсам: учебным и
	учебно-методическим материалам, расписанию занятий и т.д.;
	задавать вопросы преподавателю по его учебной дисциплине, получать
	конкретную информацию по тем или иным учебным и/или
	организационным вопросам,
	проходить тестирование, выполняя задания на выбор правильных ответов,
	установление соответствия, заполнение пропусков, установление
	истинности или ложности, а также давать развёрнутые ответы на
	поставленные вопросы.
	Для студентов, не имеющих возможности посещать очные занятия,
	осуществляются онлайн-консультирование. Консультации предполагают
	дополнительный разбор учебного материала и восполнение пробелов в
	знаниях студентов.
	Технологии индивидуализации обучения: обеспечиваются возможностью
	применения индивидуальных устройств и средств, ПК, учётом темпов
	работы и утомляемости, предоставлением дополнительных консультаций.
3. Адаптация	В ходе проведения промежуточной аттестации предусмотрено:
процедуры	- предъявление обучающимся печатных и (или) электронных материалов в
проведения	формах, адаптированных к ограничениям их здоровья;
промежуточной	- возможность пользоваться индивидуальными устройствами и средствами,
аттестации	позволяющими адаптировать материалы, осуществлять приём и передачу
	информации с учетом их индивидуальных особенностей;
	- увеличение продолжительности проведения аттестации;
	- возможность присутствия ассистента и оказания им необходимой помощи
	(занять рабочее место, передвигаться, прочитать и оформить задание,
	общаться с преподавателем).
4.	http://umcvpo.ru/about-project - Федеральный портал высшего образования
Дополнительное	студентов с инвалидностью и ОВЗ
информационно-	https://www.chsu.ru/fakultety/ffkis/rc - Сайт РЦ поддержки обучающихся с
методическое	ОВЗ и работающих с этой категорией лиц ЧГУ
обеспечение	· ·

1. Специальные условия, обеспечиваемые в процессе преподавания дисциплины

предоставление образовательного контента в текстовом электронном формате, позволяющем переводить аудиальную форму лекции в плоскопечатную информацию;

наличие возможности использовать индивидуальные звукоусиливающие устройства и сурдотехнические средства, позволяющие осуществлять приём и передачу информации; осуществлять взаимообратный перевод текстовых и аудиофайлов (блокнот для речевого ввода), а также запись и воспроизведение зрительной информации.

наличие системы заданий, обеспечивающих систематизацию вербального материала, его схематизацию, перевод в таблицы, схемы, опорные тексты, глоссарий;

наличие наглядного сопровождения изучаемого материала (структурнологические схемы, таблицы, графики, концентрирующие и обобщающие информацию, опорные конспекты, раздаточный материал);

наличие чёткой системы и алгоритма организации самостоятельных работ и проверки заданий с обязательной корректировкой и комментариями;

обеспечение практики опережающего чтения, когда студенты заранее знакомятся с материалом и выделяют незнакомые и непонятные слова и фрагменты;

особый речевой режим работы (отказ от длинных фраз и сложных предложений, хорошая артикуляция; четкость изложения, отсутствие лишних слов; повторение фраз без изменения слов и порядка их следования; обеспечение зрительного контакта во время говорения и чуть более медленного темпа речи, использование естественных жестов и мимики);

чёткое соблюдение алгоритма занятия и заданий для самостоятельной работы (называние темы, постановка цели, сообщение и запись плана, выделение основных понятий и методов их изучения, указание видов деятельности студентов и способов проверки усвоения материала, словарная работа);

соблюдение требований к предъявляемым учебным текстам (разбивка текста на части; выделение опорных смысловых пунктов; использование наглядных средств);

• минимизация внешних шумов;

предоставление возможности соотносить вербальный и графический материал; комплексное использование письменных и устных средств коммуникации при работе в группе;

сочетание на занятиях всех видов речевой деятельности (говорения, слушания, чтения, письма, зрительного восприятия с лица говорящего)

2. Адаптационные и вспомогательны е технологии, используемые в процессе преподавания дисциплины

Технологии активизации речевой деятельности: обеспечиваются соблюдением режима слухо-зрительного восприятия речи, использованием различных видов коммуникации; активизацией всех сторон и видов словесной речи (устная, письменная).

Технологии перевода устной речи в письменную: обеспечены специальным программным обеспечением (программа «Коммуникатор»), а для обратной связи - компьютерный синтезатор речи. Программы позволяют распознать речь и переводить ее в письменную форму или на русский жестовый язык. Набранный текст озвучивается компьютерным синтезатором речи.

Технологии дистанционного обучения: обеспечиваются наличием корпоративного образовательного портала, созданного разработчиками на платформе Sakai. Образовательный портал предоставляет студентам с ОВЗ и инвалидностью возможность выполнять различные операции:

получать варианты заданий и отправлять выполненные;

узнавать результаты выполненных работ и знакомиться с рецензией на них; получать различную справочную информацию, касающуюся учебного процесса посылать сообщения преподавателю любому И администраторов; отправлять материалы, относящиеся к дисциплинам текущего семестра, а также отчеты по практике и другие файлы; иметь дистанционный доступ к информационным ресурсам: учебным и учебно-методическим материалам, расписанию занятий и т.д.; задавать вопросы преподавателю по его учебной дисциплине, получать конкретную информацию ПО тем или иным учебным и/или организационным вопросам в письменной форме, проходить тестирование, выполняя задания на выбор правильных ответов, установление соответствия, заполнение пропусков, установление истинности или ложности, а также давать развёрнутые ответы поставленные вопросы. Для студентов, не имеющих возможности посещать очные занятия, осуществляются онлайн-консультирование. Консультации предполагают дополнительный разбор учебного материала и восполнение пробелов в знаниях студентов. Технологии индивидуализации обучения: обеспечиваются возможностью применения индивидуальных устройств и средств, ПК, учётом темпов работы и утомляемости, предоставлением дополнительных консультаций. Технологии визуализации: обеспечиваются дублированием аудиальной информации зрительной, применением средств программного методического обеспечения наглядности обучения (мультимедийная среда для изложения и наглядного отображения информации, интерактивные 3. В ходе проведения промежуточной аттестации предусмотрено: Адаптация - предъявление обучающимся печатных и (или) электронных материалов в процедуры проведения формах, адаптированных к ограничениям их здоровья; промежуточной - возможность пользоваться индивидуальными устройствами и средствами, аттестации позволяющими адаптировать материалы, осуществлять приём и передачу информации с учетом их индивидуальных особенностей - увеличение продолжительности проведения аттестации; - возможность присутствия ассистента и оказания им необходимой помощи (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с преподавателем). http://umcvpo.ru/about-project - Федеральный портал высшего образования Дополнительное студентов с инвалидностью и ОВЗ информационноhttps://www.chsu.ru/fakultety/ffkis/rc - Сайт РЦ поддержки обучающихся с ОВЗ и работающих с этой категорией лиц ЧГУ методическое https://speechpad.ru/ - Программа «Speechpad» («Речевой блокнот») для обеспечение перевода устной речи в письменную «NVDA http://nvda.ru/ Программа экранного доступа (NonVisualDesktopAccess)» («Синтезатор речи») для перевода письменной речи в устную http://www.surdophone.ru/ Программа «Сурдофон» для перевода устной речи в жестовую

СТУДЕНТЫ С НАРУШЕНИЯМИ РЕЧИ (ДЦП с нарушениями речи)

1. Специальные	наличие возможности использовать индивидуальные устройства и средства,
условия,	позволяющие осуществлять приём и передачу информации;

обеспечиваемые	наличие системы заданий, обеспечивающих систематизацию вербального
в процессе	материала, его схематизацию, перевод в таблицы, схемы, опорные тексты,
преподавания	глоссарий;
дисциплины	наличие наглядного сопровождения изучаемого материала;
	наличие чёткой системы и алгоритма организации самостоятельных работ и
	проверки заданий с обязательной корректировкой и комментариями;
	обеспечение практики опережающего чтения, когда студенты заранее
	знакомятся с материалом и выделяют незнакомые и непонятные слова и
	фрагменты;
	предоставление возможности соотносить вербальный и графический
	материал; комплексное использование письменных и устных средств
	коммуникации при работе в группе;
	сочетание на занятиях всех видов речевой деятельности (говорения,
	слушания, чтения, письма, зрительного восприятия с лица говорящего).
2.	Технологии активизации речевой деятельности: обеспечиваются
Адаптационные	соблюдением режима слухо-зрительного восприятия речи, использованием
И	различных видов коммуникации; активизацией всех сторон и видов
вспомогательны	словесной речи (устная, письменная).
е технологии,	Технологии дистанционного обучения: обеспечиваются наличием
используемые в	корпоративного образовательного портала, созданного разработчиками на
процессе	платформе Sakai. Образовательный портал предоставляет студентам с OB3 и
преподавания	инвалидностью возможность выполнять различные операции:
дисциплины	получать варианты заданий и отправлять выполненные;
	узнавать результаты выполненных работ и знакомиться с рецензией на них;
	получать различную справочную информацию, касающуюся учебного
	процесса и посылать сообщения преподавателю и любому из
	администраторов; отправлять материалы, относящиеся к дисциплинам текущего семестра, а
	также отчеты по практике и другие файлы;
	иметь дистанционный доступ к информационным ресурсам: учебным и
	учебно-методическим материалам, расписанию занятий и т.д.;
	задавать вопросы преподавателю по его учебной дисциплине, получать
	конкретную информацию по тем или иным учебным и/или
	организационным вопросам в письменной форме,
	проходить тестирование, выполняя задания на выбор правильных ответов,
	установление соответствия, заполнение пропусков, установление
	истинности или ложности, а также давать развёрнутые ответы на
	поставленные вопросы.
	Для студентов, не имеющих возможности посещать очные занятия,
	осуществляются онлайн-консультирование. Консультации предполагают
	дополнительный разбор учебного материала и восполнение пробелов в
	знаниях студентов.
	Технологии индивидуализации обучения: обеспечиваются возможностью
	применения индивидуальных устройств и средств, ПК, учётом темпов
	работы и утомляемости, предоставлением дополнительных консультаций.
	Технологии визуализации: обеспечиваются дублированием аудиальной
	информации зрительной, применением средств программного и
	методического обеспечения наглядности обучения (мультимедийная среда
	для изложения и наглядного отображения информации, интерактивные
	для изложения и наглядного отооражения информации, интерактивные доски).
3. Адаптация	В ходе проведения промежуточной аттестации предусмотрено:
, , , , , ,	- предъявление обучающимся печатных и (или) электронных материалов в
процедуры	- предольнение обучающимся печатных и (или) электронных материалов в

проведения	формах, адаптированных к ограничениям их здоровья;
промежуточной	- возможность пользоваться индивидуальными устройствами и средствами,
аттестации	позволяющими адаптировать материалы, осуществлять приём и передачу
	информации с учетом их индивидуальных особенностей
	- увеличение продолжительности проведения аттестации;
	- возможность присутствия ассистента и оказания им необходимой помощи
	(занять рабочее место, передвигаться, прочитать и оформить задание,
	общаться с преподавателем).
4.	http://umcvpo.ru/about-project - Федеральный портал высшего образования
Дополнительное	студентов с инвалидностью и ОВЗ
информационно-	https://www.chsu.ru/fakultety/ffkis/rc - Сайт РЦ поддержки обучающихся с
методическое	ОВЗ и работающих с этой категорией лиц ЧГУ
обеспечение	https://speechpad.ru/ - Программа «Speechpad» («Речевой блокнот») для
	перевода устной речи в письменную
	http://nvda.ru/ - Программа экранного доступа «NVDA
	(NonVisualDesktopAccess)» («Синтезатор речи») для перевода письменной
	речи в устную

СТУДЕНТЫ С ИНВАЛИДНОСТЬЮ ПО СОМАТИЧЕСКОМУ ЗАБОЛЕВАНИЮ (заболевания эндокринной, центральной нервной и сердечно-сосудистой систем, онкологические заболевания)

1. Специальные условия, формате; возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента; предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее подготовленном тексте).
обеспечиваемые возможность использовать индивидуальные устройства и средства, позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента; предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
в процессе позволяющие адаптировать материалы, осуществлять приём и передачу информации с учетом индивидуальных особенностей и состояния здоровья студента; предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
преподавания информации с учетом индивидуальных особенностей и состояния здоровья студента; предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
студента; предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
предоставление возможности предкурсового ознакомления с содержанием учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
учебной дисциплины и материалом по курсу за счёт размещения информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
информации на корпоративном образовательном портале; возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
возможность вести запись учебной информации студентами в удобной для них форме (аудиально, аудиовизуально, в виде пометок в заранее
них форме (аудиально, аудиовизуально, в виде пометок в заранее
полготовленном тексте).
nogration terrain.
применение поэтапной системы контроля, более частый контроль
выполнения заданий для самостоятельной работы,
стимулирование выработки у студентов навыков самоорганизации и
самоконтроля;
наличие пауз для отдыха и смены видов деятельности по ходу занятия.
2. Технологии активизации интеллектуальной деятельности: обеспечиваются
Адаптационные средствами программного и методического обеспечения образовательного
и процесса, увеличивающие информационную ценность материалов,
вспомогательны стимулирующие активность студентов в переработке информации.
е технологии, Технологии здоровьесбережения: обеспечиваются чередованием режима
используемые в труда и отдыха, соблюдением эргономических и гигиенических требований
процессе к условиям умственного труда и продолжительности непрерывной нагрузки.
преподавания Технологии дистанционного обучения: обеспечиваются наличием
дисциплины корпоративного образовательного портала, созданного разработчиками на
платформе Sakai. Образовательный портал предоставляет студентам с OB3 и
инвалидностью возможность выполнять различные операции:
получать варианты заданий и отправлять выполненные;
узнавать результаты выполненных работ и знакомиться с рецензией на них;
получать различную справочную информацию, касающуюся учебного

	процесса и посылать сообщения преподавателю и любому из
	администраторов;
	отправлять материалы, относящиеся к дисциплинам текущего семестра, а
	также отчеты по практике и другие файлы;
	иметь дистанционный доступ к информационным ресурсам: учебным и
	учебно-методическим материалам, расписанию занятий и т.д.;
	задавать вопросы преподавателю по его учебной дисциплине, получать
	конкретную информацию по тем или иным учебным и/или
	организационным вопросам,
	проходить тестирование, выполняя задания на выбор правильных ответов,
	установление соответствия, заполнение пропусков, установление
	истинности или ложности, а также давать развёрнутые ответы на
	поставленные вопросы.
	Для студентов, не имеющих возможности посещать очные занятия,
	осуществляются онлайн-консультирование. Консультации предполагают
	дополнительный разбор учебного материала и восполнение пробелов в
	знаниях студентов.
	Технологии индивидуализации обучения: обеспечиваются возможностью
	применения индивидуальных устройств и средств, ПК, учётом темпов
	работы и утомляемости, предоставлением дополнительных консультаций.
3. Адаптация	В ходе проведения промежуточной аттестации предусмотрено:
процедуры	- предъявление обучающимся печатных и (или) электронных материалов в
проведения	формах, адаптированных к ограничениям их здоровья;
промежуточной	- возможность пользоваться индивидуальными устройствами и средствами,
аттестации	позволяющими адаптировать материалы, осуществлять приём и передачу
	информации с учетом их индивидуальных особенностей
	- увеличение продолжительности проведения аттестации; - возможность присутствия ассистента и оказания им необходимой помощи
	(занять рабочее место, передвигаться, прочитать и оформить задание,
	общаться с преподавателем).
4.	http://umcvpo.ru/about-project - Федеральный портал высшего образования
Дополнительное	студентов с инвалидностью и ОВЗ
информационно-	https://www.chsu.ru/fakultety/ffkis/rc - Сайт РЦ поддержки обучающихся с
методическое	ОВЗ и работающих с этой категорией лиц ЧГУ
обеспечение	and a processing of the state open and in the