МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный

университет» (КГУ)

УТВЕРЖДАЮ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Направление подготовки 35.03.02 Технология лесозаготовительных и деревоперерабатывающих производств

Направленность «Цифровые технологии проектирования и производства продукции из древесины»

Квалификация (степень) выпускника: бакалавр

Кострома 2023 г.

Рабочая программа дисциплины «Прикладная механика» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 350302 «Технология лесозаготовительных и деревообрабатывающих производств», утвержденного приказом Министерства образования и науки Российской Федерации от 26 июля 2017 г. № 698

Разработал: Подьячев А. В., д.т.н., доцент Рецензент: Бойко С. И., проф, д.т.н., доцент .

ПРОГРАММА УТВЕРЖДЕНА:

На заседании кафедры лесозаготовительных и деревоперерабатывающих производств

Протокол заседания кафедры №7 от 31 мая 2023 г.

ПРОГРАММА ПЕРЕУТВЕРЖДЕ	HA:			
На заседании кафедры Лесозагото	вительн	ных и деревопер	ерабатыван	ощих
производств:				
Протокол заселания кафелры №	ОТ	20	г	

1. Цели и задачи освоения дисциплины

Цель дисциплины: ознакомление с основами теоретической механики.

Задачи дисциплины: овладение минимальными навыками решения задач по статике, кинематике и динамике; развитие инженерного мышления и формирование у студентов систематизированных знаний и практических навыков использования методов решения задач на основе применения основных теорем всех разделов теоретической механики.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен освоить компетенции: способность понимать научные основы технологических процессов в области лесозаготовительных и деревоперерабатывающих производств (ОПК-1);

ИД1 ОПК-1 Владение методами построения математических моделей при решении типовых профессиональных задач;

ИД6 ОПК-1 Владеет навыками изображения объектов на плоских чертежах; ИД7 ОПК-1 Способен применять на практике методы теоретического и экспериментального исследования в механике;

ИД8 ОПК-1 Способен решать инженерные задачи на основе применения положений теоретической и прикладной механики;

знать основные понятия и законы механики абсолютно твердого тела; методы определения сил реакции опор рассматриваемого тела и системы тел при различных условиях его нагружения, экспериментальные и аналитические методы определения положения центра тяжести; методы расчета ферм; методы решения задач с учетом сил трения скольжения и качения; основные методы определения кинематических характеристик движения твердого тела при поступательном, вращательном, плоском, сферическом и свободном движении; методы решения задач динамики с применением теорем динамики точки и системы и принципов механики;

уметь самостоятельно строить и исследовать математические и механические модели технических систем; пользоваться методами расчета элементов конструкций при различных условиях нагружения в условиях статики и динамики; определять механические характеристики движения тел; определять внешние и внутренние силы, действующие на элементы конструкции (собственный вес, реакции опор, силы контакта со стороны других тел, силы инерции); вычислять механические характеристики тел: положение центра тяжести и моменты инерции относительно оси;

владеть навыками решения типовых практических задач.

В ходе изучения дисциплины со студентами проводится воспитательная работа — научно-образовательное воспитание посредством содержания дисциплины и актуальных воспитательных технологий.

7

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к базовой части учебного плана Б1, Б.22. Изучается в 1 и 2 семестрах обучения. Изучение дисциплины основывается на ранее освоенных дисциплинах: математика, физика, инженерная графика.

Изучение дисциплины является основой для освоения последующих дисциплин: моделирование и оптимизация процессов, прикладная механика, технологии и оборудование лесозаготовительных производств, технология и оборудование лесных складов, проектирование и конструирование изделий из древесины, технология деревообрабатывающих производств.

4. Объем дисциплины (модуля)

4.1. Объем дисциплины в зачетных единицах с указанием академических часов и виды учебной работы

Виды учебной работы,	Очная форма	Заочная
Общая трудоемкость в зачетных единицах	4	4
Общая трудоемкость в часах	144	144
Аудиторные занятия в часах, в том числе:	64	28
Лекции	32	4
Практические занятия	0	0
Лабораторные занятия	32	14
ИКР	0,5	
Самостоятельная работа в часах	79,5	113
Форма промежуточной аттестации		13

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма	Заочная
Лекции	32	4
Практические занятия	0	
Лабораторные занятий	32	14
Консультации	0	
Зачет/зачеты	0,5	0,5
Экзамен/экзамены		0,35
Всего	64,5	14,85

5. Содержание дисциплины (модуля), структурированное по темам (разделам), с указанием количества часов и видов занятий 5.1 Тематический план учебной дисциплины

Очная форма

$N_{\underline{0}}$	Название раздела, темы	Всего	Аудиторные занятия		Самостояте		
		з.е/час	Лекц.	Практ.	Лаб.	льная	

	2-й семестр					
1.	Основные положения	6	1	1	2	
2.	Плоская система сил	26	5	5	10	
3.	Пространственная система	14	3	3	6	
	сил					
4.	Центр тяжести	6	1	1	2	
5.	Кинематика точки	14	2	2	4	
6.	Кинематика твердого тела	42	6	6	12	
	Σ	72	18	18	36	
		3-й семе	стр			
7.	Динамика точки	16	4	4	12	
8.	Динамика системы	24	4	4	12	
9.	Принципы механики	16	4	4	12	
10	Колебания точки	16	4	4	4	
	Σ	72	16	16	40	
	Итого:	144	34	34	76	

Заочная форма

	THE POPULE					
No	Название раздела, темы	Всего	Аудит	Аудиторные занятия		Самостоятел
		з.е/час	Лекц.	Практ.	Лаб.	ьная работа
		3-я сес	сия		1	
1	Основные положения				4	28
		4-я с	ессия			
2	Статика		1		4	20
3	Кинематика		1		4	32
4	Динамика		2		6	33
	Итого:	144	4		14	113

5.2. Содержание:

Основные положения. Предмет курса "Теоретическая механика", основные задачи статики. История развития механики. Значение механики в повышении производительности, эффективности и снижении материалоемкости современной техники. Связь курса с общенаучными,

_

общеинженерными и специальными дисциплинами. Аксиомы статики. Понятие распределенной и сосредоточенной силы, понятие абсолютно твердого тела. Связи и их реакции.

Плоская система сил. Проекция силы на ось. Сходящаяся система сил. Уравнения равновесия сходящейся плоской системы сил. Теорема о трех силах. Момент силы относительно точки, как алгебраическая величина. Плечо силы. Теорема Вариньона. Три вида уравнений равновесия произвольной плоской системы сил. Плоская система параллельных сил и ее уравнения равновесия. Равновесие системы тел. Методы расчета ферм: вырезания узлов и сечений. Трение скольжения и качения. Методы определения коэффициента трения скольжения.

Пространственная система сил. Проекция силы на ось и плоскость. Пространственная сходящаяся система сил, уравнения равновесия. Пара сил, свойства пар. Теорема о параллельном переносе силы. Основная теорема статики. Случаи приведения. Уравнения равновесия произвольной пространственной системы сил. Пространственная система параллельных сил. Уравнения равновесия.

Центр тяжести. Центр параллельных сил. Координаты центра параллельных сил для неоднородного тела, объема, поверхности и линии. Центр тяжести. Центры тяжести простейших тел. Аналитические методы определения положения центра тяжести (разбиений и отрицательных площадей). Экспериментальные методы определения положения центра тяжести (подвешивания и взвешивания).

Кинематика точки. Векторный способ задания движения точки Координатный способ задания движения точки. Естественные оси координат. Скорость при векторном способе задания движения. Ускорение при векторном способе задания движения. Скорость при координатном способе задания движения. Ускорение при координатном способе задания движения. Ускорение при координатном способе задания движения. Скорость при естественном способе задания движения. Ускорение при естественном способе задания движения.

Кинематика твердого тела. Поступательное движение твердого тела. Вращательное движение. Угловая скорость и угловое ускорение. Скорость и ускорение точек тела при вращательном движении. Формула Эйлера. Уравнение равнопеременного вращения. Плоскопараллельное движение . Теорема о сложении скоростей при плоском движении. Определение скорости точек с помощью МЦС . Теорема о сложении ускорений при плоском движении . Сложное движение точки. Теорема о сложении скоростей. Теорема о сложении ускорений при сложном движении. Сферическое движение тела. Свободное движение.

Динамика точки. Закон инерции. Основной закон динамики. Закон равенства действия и противодействия. Закон независимости действия сил. Основное уравнение динамики в декартовых и естественных осях. Решение первой задачи динамики. Решение второй задачи динамики. Дифференциальное уравнение относительного движения точки. Теорема об

-

изменении количества движения точки. Теорема об изменении момента количества движения точки. Элементарная работа силы. Работа силы на конечном перемещении. Мощность. Работа силы тяжести. Работа силы упругости. Теорема об изменении кинетической энергии точки.

Динамика системы. Внешние и внутренние силы. Масса системы, центр масс, момент инерции системы точек относительно оси. Момент инерции однородного стержня. Момент инерции однородного кольца.

Теорема Гюйгенса. Теорема о движении центра масс. Теорема об изменении количества движения системы. Связь между количеством движения системы, массой системы и скоростью центра масс. Применение теоремы об изменении количества движения системы к сплошным средам.

Теорема об изменении момента количества движения системы. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси. Теорема об изменении кинетической энергии системы. Кинетическая энергия твердого тела в различных случаях движения.

Дифференциальные уравнения поступательного и вращательного движения твердого тела. Дифференциальные уравнения плоского движения.

Принципы механики. Принцип Даламбера для точки и системы. Главный вектор и главный момент сил инерции. Приведение сил инерции для различных видов движения. Принцип возможных перемещений. Общее уравнение динамики. Уравнение Лагранжа II рода.

Колебания точки. Свободные колебания. Влияние постоянной силы на свободные колебания. Затухающие колебания. Случай апериодического движения (n > k). Случай апериодического движения (n = k). Вынужденные колебания точки. Резонанс.

6. Методические материалы для обучающихся по освоению дисциплины 6.1. Самостоятельная работа обучающихся по дисциплине (модулю)

No	Раздел (тема)	Задание	Часы	Методические	Форма
п/п	дисциплины			рекомендации	контроля
				по выполнению	
				задания	
1.	Плоская система сил	РГР	4	В процессе	Проверка
2.	Пространственная си-	РГР	4	выполнения задания необходимо	домашних
	стема сил			использовать	заданий, контрольные
3.	Кинематика точки	РГР	4	лекционный материал, литературу из перечня	работы,
4.	Плоское движение	РГР	4	основной и	фронтальный
5.	Динамика точки.	РГР	4	дополнительной	опрос

7

Динамика системы	РГР	7	литературы (п.7), необходимой для освоения	
			дисциплины, плакатный фонд по	
			дисциплине, свободный поиск в интернете	

6.2. Тематика и задания для практических занятий (при наличии)

1.	Равновесие тела под действием плоской системы сил.
2.	Расчет ферм.
3.	Равновесие системы тел.
4.	Центр тяжести.
5.	Равновесие с учетом трения скольжения.
6.	Кинематика точки. Определение кинематических характеристик движения.
7.	Вращательное движение твердого тела
8.	Плоское движение твердого тела.
9.	Сложное движение точки.
10.	Решение первой задачи динамики.
11.	Решение второй задачи динамики.
12.	Применение теорем динамики точки к решению задач.
13.	Теоремы динамики системы.
14.	Принцип Даламбера. Принцип возможных перемещений
15.	Общее уравнение динамики. Уравнение Лагранжа II рода.
16.	Свободные колебания точки
17.	Затухающие, вынужденные колебания. Резонанс.

6.3. Тематика и задания для лабораторных занятий

1.	Определение положения центра тяжести.
2.	Свободные колебания точки

6.4. Методические рекомендации для выполнения курсовых работ (проектов, РГР) *при наличии*

Студенту настоятельно рекомендуется посещать лекции ввиду сложности материала, что затрудняет возможность самостоятельного изучения дис-

циплины. Самостоятельная работа студента складывается из изучения материалов лекций и рекомендуемой литературы, подготовки к практической работе по вопросам и заданиям, выданным преподавателям в конце лекции, выполнении расчетно-графических работ. Систематическая подготовка к практическим работам — залог накопления глубоких знаний и получения зачета по результатам работ.

Отчеты по практическим занятиям и выполнение заданий лучше вести в одной тетради, так как это позволяет воспользоваться теоретическими положениями при решении практических задач, брать данные для следующих практических работ и для дальнейших дисциплин. За время практических занятий студенту следует изучить условные сокращения и обозначения.

Защита практической работы проводится по результатам проверки отчета, собеседования. Допуск студента к следующей работе возможен при положительной оценке по опросу и защите практической работы. Зачет по дисциплине студент получает автоматически, если в течение семестра имеет положительные оценки за все виды заданий по лабораторным работам, за расчетно-графические работы (РГР). Выполнение РГР – творческий и самостоятельный процесс, показывающий и формирующий умение студента самостоятельно ставить, решать задачи, работать с литературой, проводить исследования, делать выводы. Необходимо обязательное посещение консультаций, так как студент получает индивидуальное задание.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

а) основная:

- 1. 531(075) Т 195Тарг, Семен Михайлович. Краткий курс теоретической механики: учебник для втузов. 20-е изд., стер. Москва: Высш. шк., 2010. 416 с.: ил. (Для высш. учеб. заведений. Общетехн. дисциплины). МО РФ. ЕН. осн. ISBN 978-5-06-006193-2
- 2. 22.2я7 М 564 Мещерский, И. В. Задачи по теоретической механике: [учеб. пособие для студ. высш. учеб. заведений]: рекомендовано УМО / под ред. В. А. Пальмова, Д. Р. Меркина. Изд. 50-е, стер. СПб: Лань, 2010. 447, [1] с.: ил. (Учебники для вузов. Специальная литература). ISBN 978-5-9511-0019-1.
- 3. 531(075) Я 146 Яблонский, Александр Александрович. Курс теоретической механики: Учебник для техн. спец. вузов. 9-е изд., стер. Москва: Лань, 2002. 768 с. МО РФ. ЕН, ОПД. ISBN 5-8114-0390-9.

б) дополнительная:

- 1. 531(075) Н 624 Никитин, Николай Никитич. Курс теоретической механики: Учебник для вузов. 6-е изд., перераб. и доп. Москва: Высш. шк., 2003. 719 с.: ил. МО. ЕН, ОПД. ISBN 5-06-004276-6 : 126.13.
- 2. 531(075) С 232 Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для втузов / под общ. ред. А.А. Яблонского. 14-е

Λ

- изд., стер. Москва: Интеграл-Пресс, 2005. 382 с. МО РФ. ЕН, ОПД. ISBN 5-89602-016-3.
- 3. Разин Сергей Николаевич. Теоретическая механика: учеб. пособие Кострома: КГУ, 2017.- 82с.: ил.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

- 1. Федеральный портал «Российское образование»;
- 2. Официальный сайт министерства образования и науки Российской Федерации
- 3. Caйт WWW. SOPROMAT. RU.

Электронные библиотечные системы:

- 1. ЭБС «Лань»
- 2. ЭБС «Университетская библиотека online»
- 3. ЭБС «Znanium»

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

	9.1 Специализированные лаборатории и классы					
№ п/п	Номер, наименование, принадлеж- ность помещения	Количество посадочных мест				
1.	1. Аудитория Е-125 – Лаборатория Теоретической механики 42		24			
	9.2. Оборудование, нагляднь	іе материал	ы			
No	Номер, наименование		Аудитория			
1.	1. Прибор для определения коэффициента трения Е-125					
2.	2. Прибор для исследования свободных колебаний точки Е-125					
	3. Прибор для исследования колебаний системы с одной E-125 степенью свободы					
	9.3. Компьютерные про	граммы				
1.	1. Определение кинематических характеристик движения точки.					
2.	2. Определение реакций опор тела под действием произвольной плоской					
	системы сил.					
	9.4. Аудио-видео пособия					
1.	нет					